2走近chatGPT 走向AGI 机器学习 chatGPT研发过程主要步骤 收到一个问题后的处理步骤

news/2025/1/18 4:31:42/

目标:走向AGI

我们不想写代码了,想让机器能自己(输入)听到、看到、摸到、闻到、理解并(输出)做到、说出来、画出来、表现出来,适应新东西完成复杂的任务不再需要人类干预,这就是AGI(Artificial General Intelligence,全面人工智能)。

这些输入(多模态)就是数据,计算机从数据中学习(提取特征),把这些特征都连起来形成网络(神经网络),当有任务时,就像在脑海中形成一条条路径,当遇到类似的情况时,这些路径会帮助我们快速做出反应。这些路径是通过不断的学习和调整权重(微调)形成的。

传统的编程方法:需要人明确地编写规则来告诉你怎样区分猫和狗(很难覆盖所有情况)。
机器学习(模拟人脑):给计算机提供大量关于猫和狗的图片,每张图片都标注了是猫还是狗(监督学习)。计算机通过分析这些数据,自己“学习”如何区分猫和狗。或者,给计算机大量没有标记的数据,让计算机自己找出数据中的模式或者结构(非监督学习)。通过数据来训练模型,使得计算机能够解决复杂的问题,而不是依赖人类预先设定的规则。

走近chatGPT,一步一步看已经实现的技术

神经网络(能学习,学到的是特征和微调参数权重):能识别图像、理解语言或玩游戏等任务。

计算机从数据中提取特征,并通过调整内部连接来适应这些模式。这使得它非常适合处理复杂和多变的数据,正如我们日常生活中所遇到的那样。

神经网络,为什么能学习?这很重要。

通过训练能调整连接(权重)来适应输入数据。像我们学习骑自行车:最初,我们可能会摔倒,但通过不断尝试和调整平衡方式(权重),我们最终学会了骑车。

神经网络通过学习过程主要学习到的是特征(features)和参数权重(weights)的微调。

  1. 特征学习: 在神经网络中,特征学习是一个自动发生的过程。神经网络通过它的多层结构能够从原始数据中提取出有用的特征。例如,在图像识别任务中,网络的底层可能会学习到边缘或颜色等基本特征,而更高层次的网络可能会学习到更复杂的特征,如形状或特定物体的部分。这些特征通常不是人为设计的,而是网络通过训练数据自动学习得到的。

  2. 参数权重微调: 神经网络中的每个神经元都有相应的权重和偏置(bias),这些权重和偏置在训练过程中不断调整。权重决定了输入信号的重要性,而偏置则提供了一个额外的调整空间,帮助神经元更好地拟合训练数据。通过反向传播(backpropagation)算法和梯度下降(gradient descent)等优化技术,网络逐渐调整这些参数,以最小化预测和实际结果之间的差异。这个过程就是权重的微调。

简单类比一下:可以将神经网络的学习过程比喻为烹饪过程。原始数据就像是食材,神经网络则是厨师,通过不断尝试和调整(学习和权重调整),找到最佳的食谱(模型参数),使得最后的菜肴(预测结果)尽可能地美味(准确)。特征学习就像是识别哪些食材(数据特征)搭配在一起最好,而权重微调则是调整食材比例和烹饪方法,以达到最佳口味。

chatGPT研发过程主要步骤:

  1. 需求分析与规划:确定要开发的模型的目标和功能。这包括对目标用户、应用场景以及期望实现的功能进行深入的理解和分析。

  2. 数据收集:收集大量的文本数据,这些数据将用于训练语言模型。数据的来源可能非常广泛,包括书籍、网站、论坛帖子、新闻文章等。

  3. 数据预处理:清洗和处理收集到的数据。这个步骤非常重要,因为它涉及到去除无关或低质量的内容、标准化文本格式、处理特殊字符等。

  4. 模型设计:选择或设计适合的神经网络架构。这可能包括决定使用特定类型的网络(如Transformer),以及配置网络的大小、层数、参数等。

  5. 预训练:使用收集到的数据进行模型的预训练。这个阶段通常涉及到大量的计算资源,模型会在大量文本上学习语言的基本规律和模式。

  6. 微调与优化:对模型进行微调,以适应特定的任务或应用场景。这可能包括在特定类型的数据上进一步训练模型,或调整模型的参数以优化性能。

  7. 测试与评估:对模型进行测试,以评估其性能。这包括检查模型对不同类型输入的反应,以及评估模型在特定任务上的准确性、一致性和响应时间。

  8. 集成与部署:将训练好的模型集成到应用程序或服务中,并进行部署。这可能涉及到与现有系统的集成、提供API接口等。

  9. 监控与维护:在模型部署后进行持续的监控和维护。这包括跟踪模型的性能,以及根据用户反馈和使用情况进行必要的更新和优化。

  10. 持续迭代:根据新的数据、技术进步以及用户需求的变化,不断迭代和更新模型。

总之,研发ChatGPT类型的模型是一个复杂的过程,涉及到从需求分析到模型部署的多个步骤。每个步骤都至关重要,共同确保了最终模型的效能和可用性。

chatGPT收到一个问题后的处理步骤:

  1. 输入解析:首先,ChatGPT接收并解析用户的输入。这个阶段包括理解输入的文字,包括语言、句子结构和含义。如果输入是一个特定的命令或请求(比如要求查找信息、生成图像等),ChatGPT还会识别出这些特定的需求。

  2. 上下文理解:ChatGPT会考虑到与当前对话相关的上下文信息。这包括前面的对话内容、用户的个人资料(如果提供),以及任何特定于会话的设置或指示。这个阶段是为了确保回应是连贯并且符合对话的历史背景。

  3. 信息处理和决策:在这个阶段,ChatGPT会根据输入和上下文来决定最佳的回应策略。这可能包括从内部知识库中提取信息、执行某些特定的任务(比如运行一个Python脚本或生成一张图片),或者结合多种信息源来形成回答。

  4. 生成回应:在确定了回应策略之后,ChatGPT会生成一个回答。这个过程涉及到自然语言生成(NLG),即使用机器学习模型来构造语句。在这个阶段,模型会考虑如何以清晰、准确并且自然的方式表达所需的信息或执行的任务。

  5. 输出格式化与交付:生成的回答会被格式化成适合用户阅读的形式,并发送给用户。这一步骤确保信息的呈现方式既符合用户的期望,也适合当前的交互平台(如文本聊天、语音输出等)。

总的来说,ChatGPT在收到问题后会经历接收解析、上下文理解、信息处理与决策、生成回应以及输出格式化等步骤,以确保提供恰当、相关且连贯的回答。

只从技术角度看,其他全忽略,下篇继续

BLAS(Basic Linear Algebra Subprograms,基础线性代数子程序)是一套标准的低级程序,用于执行常见的线性代数运算,例如向量加法、向量与矩阵乘法、矩阵乘法等。BLAS主要用于提高这些运算的效率,特别是在大规模计算中。

在人工智能和机器学习领域,BLAS非常重要,因为这些领域经常需要处理大量的线性代数运算。例如,在训练神经网络时,会涉及到大量的矩阵运算,BLAS可以帮助加速这些运算过程。

可以这样理解BLAS的作用:假设你有一大堆乐高积木,需要按照特定的方式组装成不同的结构。如果你每次都从头开始寻找合适的积木和组装方法,这将非常耗时。而BLAS就像是一套预先定义好的、高效的组装指南,可以快速找到需要的积木(线性代数运算的元素)并以最有效的方式组装它们(执行线性代数运算)。这样就大大提高了构建复杂结构(完成复杂计算任务)的效率。

总之,BLAS是优化和执行线性代数运算的重要工具,它在人工智能和机器学习中发挥着关键作用。

机器学习是指计算机程序可以从数据中学习,而神经网络是一种机器学习算法。可以用一个简单的类比来理解:假设机器学习是一家餐厅,那么神经网络就像是餐厅里的一道特色菜。

  1. 机器学习(餐厅):机器学习是人工智能领域的一个重要分支,它涉及算法和统计模型的使用,使计算机系统能够基于数据进行学习和做出决策。就像一家餐厅提供各种不同的菜肴,机器学习提供了各种不同的算法和技术,用来解决不同类型的问题。

  2. 神经网络(特色菜):神经网络是机器学习中的一种算法,灵感来源于人脑的神经元网络结构。它们非常适合于处理大量的数据,并且在诸如图像识别、语音识别、自然语言处理等领域表现出色。神经网络就像餐厅里的一道特色菜,虽然不是唯一的选择,但因其独特的味道和处理复杂问题的能力而广受欢迎。

简而言之,神经网络是机器学习领域下的一种重要方法,但并不是机器学习的全部。还有其他许多算法和技术,如决策树、支持向量机等,也属于机器学习的范畴。

人工智能(AI)领域除了机器学习,还包含了许多其他重要的分支。

可以将这些分支比作一座科技森林中的不同类型的树木,每种树木都有其独特的特点和用途。主要分支包括:

  1. 知识表达和推理:这是AI的传统核心领域之一,涉及理解和表示外部世界的知识,以及如何利用这些知识来进行有效的推理。想象一棵树,其树干代表知识库,树枝代表推理机制,能够从已知信息中推导出新的结论。

  2. 自然语言处理(NLP):NLP关注于如何让计算机理解、解释和生成人类语言。这像是一种能够理解和模仿人类交流方式的树,它的叶子能够捕捉和反映人类语言的复杂性和微妙性。

  3. 计算机视觉:这个领域致力于让机器“看”懂视觉世界,识别和处理图像和视频数据。它就像一棵具有视觉感知能力的树,可以识别和解析其视野中的一切。

  4. 机器人技术:机器人技术集成了感知、决策和动作执行等多个AI领域,以创建能够自主或半自主工作的机器。这类似于一棵能够移动和与环境互动的树。

  5. 专家系统:专家系统模仿人类专家的决策能力,为特定领域的问题提供解决方案。这就像一棵树,其树干和枝叶紧密编织,形成一个包含丰富专业知识的网络。

  6. 感知系统:涉及声音、触觉等感知模式的AI应用,可以类比为一种对环境变化非常敏感的树,能够从多种感官输入中捕捉信息。

  7. 演化计算:使用自然选择的原理(如遗传算法)来解决优化问题。这就像一棵不断适应环境并演化的树。

每个分支都有其独特的研究领域和应用场景,共同构成了丰富多彩的人工智能领域。


http://www.ppmy.cn/news/1285516.html

相关文章

Python实现马赛克图片处理

文章目录 读取图片代码1、导入使用包2、读取图片 操作图片1、上下翻转2、左右翻转3、颜色颠倒4、降低图片精度5、打马赛克 说明: 在python中,图片可以看成一个三维的矩阵,第一维控制着垂直方向,第二维控制着水平方向,第…

亚马逊鲲鹏系统一款自动化全能软件

亚马逊鲲鹏系统是一款专为亚马逊买家提供全方位功能的自动化软件。它不仅可以轻松实现自动注册、养号、测评、QA等一系列操作,更在用户关心的账号关联问题上做出了创新性的解决方案。有的朋友可能对全自动化操作心存疑虑,担心可能引起关联从而导致封号&a…

K8S学习指南(48)-k8s的pod驱逐

文章目录 引言什么是Pod的驱逐?驱逐的原因1. 节点故障2. 资源不足 驱逐策略1. 优雅终止2. PodDisruptionBudget 实际应用示例结论 引言 Kubernetes(K8s)是一款开源的容器编排平台,具有强大的调度和管理能力。在容器化应用部署到K…

实施阶段(2023年12月)

【项目活动3】通过游戏体验,发现我们设计的小程序只能PK一次,如果要多次PK,又该如何修改程序呢? 师引导:重复多次PK涉及到哪种算法结构? 学生复习:循环语句。 师生共同复习循环结构算法,重点…

Evidential Deep Learning to Quantify Classification Uncertainty

本片文章发表于NeurIPS 2018。 文章链接:https://arxiv.org/abs/1806.01768 一、概述 近年来,神经网络在不同领域取得了革命性的进步,尤其是在dropout、normalization以及skip connection等方法被提出之后,撼动了整个机器学习领…

mac安装k8s环境

安装kubectl brew install kubectl 确认一下安装的版本 kubectl version --client 如果想在本地运行kubernetes 需要安装minikube brew install minikube 需要注意安装minikube需要本地的docker服务是启动的 启动 默认连接的是google的仓库 minikube start 指定阿…

【开题报告】基于SpringBoot的茶文化宣传网站设计与实现

1.研究背景和意义 1.1研究背景 茶文化是中国传统文化的重要组成部分,具有悠久的历史和丰富的内涵。茶文化不仅是一种饮食文化,更是一种生活方式和精神追求。然而,在当今快节奏的生活中,茶文化逐渐被人们所忽视。为了加强对茶文化…

SONiC和ONL所依赖的Debian版本说明

Debian 的最新几个版本 下一代 Debian 正式发行版的代号为 trixie — 测试(testing)版 Debian 12 (bookworm) — 当前的稳定(stable)版 Debian 11 (bullseye) — 当前的旧的稳定(oldstable)版 Debian 10&a…