第四周:机器学习知识点回顾

news/2024/11/30 1:44:32/

前言
讲真,复习这块我是比较头大的,之前的线代、高数、概率论、西瓜书、樱花书、NG的系列课程、李宏毅李沐等等等等…那可是花了三年学习佳实践下来的,现在一想脑子里就剩下几个名词就觉得废柴一个了,朋友们有没有同感,高中的留给高中老师,大学的给大学老师,研究生的留给谁了呢~但是呢,想想我马上要成为风口上的众多马上飞起的(* ̄(oo) ̄),不说废话,撸起袖子开干!!!
tips:不做具体视频课程学习,基本会按照有PPT的看PPT,知识点忘得比较干净的上最新的课程里面查漏补缺,也不能忘得一干二净不是,还是留了点的O(∩_∩)O哈哈~

学习资料

以我的专栏笔记为主线(基本涵盖了下面的资料),李宏毅老师的课程过一遍,其他为辅助资料查漏补缺;
在这里插入图片描述

  1. 李航《统计学习方法》:机器学习数学基础补齐
  2. 机器学习算法:ShowMeAI
  3. 吴恩达的《Machine Learning》 :以PPT为主
  4. 《李宏毅机器学习2023》:以课程为主
  5. 书籍 - 周志华的《机器学习》-西瓜书 :知识补齐用
  6. 书籍 - Peter Harrington的《机器学习实战》
  7. 机器学习入门强推的B站课程

知识点串联

机器学习基础

概念:从数据中自动分析得出数据模型,并对数据进行预测;

机器学习流程

机器学习流程

  1. 获取数据

名词:样本、特征、目标值(标签值)、特征值
数据结构:① 特征值 + 目标值(连续|离散);②只有特征值;
数据分割:训练数据(构建模型)、测试数据(评估模型)

  1. 数据基本处理:缺失值、异常值处理等
  2. 特征工程

特征提取:文本/图像/语音等输入>>> 机器学习的数字特征
特征预处理:特征数据–【通过转换函数】–适合算法模型的数据
特征降维:降低随机变量(特征)个数,得到“不相关”主变量过程,eg:地球仪 》地图

  1. 机器学习(模型训练/学习):监督、无监督、半监督、强化
  2. 模型评估

分类模型评估:错误率(Error Rate)、精确率(Accuracy)、查准率(Precision)、查全率(Recall)、F1、ROC曲线、AUC曲线和R平方等
在这里插入图片描述

回归模型评估:均方根误差RMSE、相对平方误差RSE、平均绝对误差MAE、相对绝对误差RAE、决定系数
在这里插入图片描述

拟合:欠拟合(过于差,学到的太少)、过拟合(过于优越,学到的太多)
在这里插入图片描述

  1. 样本预测

机器学习类型

监督学习

  1. 原理:输入特征值+目标值,输出连续的值(回归)/离散的值(分类)
  2. 案例:猫狗分类、房价预测
  3. 分类算法:k-近邻算法、贝叶斯分类、决策树与随机森林、逻辑回归、神经网络
  4. 回归算法:线性回顾、岭回归

非监督学习

  1. 原理:仅输入特征值,观察到的结果(聚类)
  2. 目的:发现潜在结构
  3. 案例:物以类聚
  4. 聚类:K-means

半监督学习

  1. 输入部分① 特征值+目标值;部分②特征值
  2. 应用:训练数据量过多的情况
  3. 监督学习不满足需求时,增强效果;

强化学习

  1. 决策流程及激励系统:4要素(Agent、action、environment、observation),输入动态变化,上一步的输出是下一步的输入,根据奖惩机制调整决策;
  2. 目的:长期利益最大化,回报函数(只会提示你是否在朝着方向前进的延迟反应)
  3. 案例:学下棋
  4. 算法:马尔科夫决策、动态规划

十大常用算法

  • KNN算法及其应用

  • 逻辑回归算法详解

  • 朴素贝叶斯算法详解

  • 决策树模型详解

  • 随机森林分类模型详解

  • 回归树模型详解

  • GBDT模型详解

  • XGBoost模型详解

  • LightGBM模型详解

  • 支持向量机模型详解

  • 聚类算法详解

  • 降维算法详解

机器学习环境安装与使用

  • 库的使用:常用的numpy、pandas、matplotlib、jupyter、tables等 (这一部分我的专栏【Python模块】专门有讲这些库的用法,安装方式上网一找一大堆),其中numpy、pandas以及matplotlib在上周Python的复习过程中已经涉及到了!见【第三周:Python能力复盘】
  • 工具使用:Anaconda、Jupyter notebook、Markdown(哈哈,CSDN我就是那markdown编辑的,现成的技能😁)

机器学习案例

  • Azure机器学习实验搭建:https://www.codenong.com/cs106570915/

http://www.ppmy.cn/news/1282769.html

相关文章

linux开放tomcat 8080端口

1、查看8080是否开放 firewall-cmd --query-port8080/tcp查看已开启的端口 firewall-cmd --list-ports开启防火墙 systemctl start firewalld2、永久开放8080端口 firewall-cmd --zonepublic --add-port8080/tcp --permanent3、重加载(重启防火墙) …

Isaac Sim 仿真机器人urdf文件导入

本教程展示如何在 Omniverse Isaac Sim 中导入 urdf 一. 使用内置插件导入urdf 安装urdf 插件 方法是转到“window”->“Extensions” 搜索框中输入urdf, 并启用 通过转至Isaac Utils -> Workflows -> URDF Importer菜单来访问 urdf 扩展。 表格中的 1,2,3 对应着…

python脚本抢各大平台大额优惠卷

文章目录 python脚本抢各大平台大额优惠卷写在前面准备阶段一、所需工具二、ChromeDriver下载教程 三、Seleuinm安装1、打开cmd,输入如下命令 开始抢券淘宝脚本京东抢购脚本 python脚本抢各大平台大额优惠卷 写在前面 当电商平台上演盛大的购物狂欢时,如…

flex--伸缩性

1.flex-basis flex-basis 设置的是主轴方向的基准长度,会让宽度或高度失效。 备注:主轴横向:宽度失效;主轴纵向:高度失效 作用:浏览器根据这个属性设置的值,计算主轴上是否有多余空间&#x…

韩版传奇 2 源码分析与 Unity 重制(二)客户端启动与交互流程

专题介绍 该专题将会分析 LOMCN 基于韩版传奇 2,使用 .NET 重写的传奇源码(服务端 客户端),分析数据交互、状态管理和客户端渲染等技术,此外笔者还会分享将客户端部分移植到 Unity 和服务端用现代编程语言重写的全过…

PCL配置记录

PCL配置记录 1. Windows10vs2019pcl win10vs2019pcl 1.11.1 1.下载与安装 https://github.com/PointCloudLibrary/pcl/releases ) 双击exe安装 注意: ( ) 解压 “pcl-1.11.0-pdb-msvc2019-win64.zip”,将解压得到的文件夹中的内容添加“…\PCL…

蓝牙技术在车联网中的应用——无线控制小车系统设计

1车联网 车联网的概念引申自物联网,是物联网技术在交通系统领域中的典型应用。该网络体系能够实现智能交通管理和车辆的精准控制。本设计在此背景下,探讨并提供了一种可行的人车交互方式。 2系统整体架构 本设计以Arduino UNO为核心模块,通过…

重组蛋白表达系统的比较-卡梅德生物

一、重组蛋白表达是什么? 重组蛋白表达是通过基因工程手段将目标蛋白基因导入宿主细胞,使其表达出特定的蛋白。该过程包括以下步骤: 1. 构建表达载体:将目标蛋白基因插入表达载体中,通常选择带有启动子、终止子和选择…