智能优化算法应用:基于水基湍流算法3D无线传感器网络(WSN)覆盖优化 - 附代码

news/2024/11/9 9:33:58/

智能优化算法应用:基于水基湍流算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于水基湍流算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.水基湍流算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用水基湍流算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.水基湍流算法

水基湍流算法原理请参考:https://blog.csdn.net/u011835903/article/details/121785889
水基湍流算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

水基湍流算法参数如下:

%% 设定水基湍流优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明水基湍流算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码


http://www.ppmy.cn/news/1278466.html

相关文章

【RocketMQ每日一问】broker会定时给ns发送心跳,那么心跳内容是什么样的?

RocketMQ中,Broker 向 NameServer 发送的心跳信息主要包含以下内容: BrokerName:Broker 的标识名称。BrokerId:Broker的ID,主节点的ID通常为0,从节点的ID大于0。Broker地址:包括 Broker IP 和端…

Mybatis3系列课程8-带参数查询

简介 上节课内容中讲解了查询全部, 不需要带条件查, 这节我们讲讲 带条件查询 目标 1. 带一个条件查询-基本数据类型 2.带两个条件查询-连个基本数据类型 3.带一个对象类型查询 为了实现目标, 我们要实现 按照主键 查询某个学生信息, 按照姓名和年级编号查询学生信息 按照学生…

Canny函数opencv

Canny函数opencv 在OpenCV中使用Canny函数时,其中的两个参数是用于边缘检测的阈值。具体来说,Canny(imgBlur, imgCanny, 25, 75); 这行代码中的两个阈值有特定的含义: 低阈值 (Low Threshold): 第一个参数25是低阈值。这个阈值用来控制边缘检…

面试建议篇(持续更新....)

不要把面试当作回答问题的过程,而是一个交流和沟通过程。 和面试官交流比重是1:3。 面对毫不知情的问题:直言没有遇到过,然后说出自己的理解。解决问题的思路比标准答案更重要;真诚是最核心的加分项。 当我遇到问题时,…

即将来临的2024年,汽车战场再起波澜?

我们来简要概况一下11月主流车企的销量表现: 根据数据显示,11月吉利集团总销量29.32万辆,同比增长28%。这在当月国内主流车企中综合实力凌厉,可谓表现得体。而与吉利直接竞争的比亚迪,尽管数据未公布,但我们…

22 3GPP在SHF频段基于中继的5G高速列车场景中的标准化

文章目录 信道模型实验μ参考信号初始接入方法波形比较 RRH:remote radio head 远程无线头 HTS:high speed train 高速移动列车 信道模型 考虑搭配RRH和车载中继站之间的LOS路径以及各种环境(开放或峡谷),在本次实验场…

两个图片完美融合 泊松编辑

一、效果惊人 二、步骤 下载安装 https://github.com/Trinkle23897/Fast-Poisson-Image-Editing.git 执行 test 目录下的 python data.py下载数据 执行测试,可以看到效果了 $ fpie -s test1_src.jpg -m test1_mask.jpg -t test1_tgt.jpg -o result1.jpg -h1 -…

【Linux笔记】文件查看和编辑

🍎个人博客:个人主页 🏆个人专栏:Linux学习 ⛳️ 功不唐捐,玉汝于成 目录 前言 命令 cat (Concatenate and Display): more 和 less: nano 和 vim (文本编辑器): 结语 我的其他博客 前言 学习Linux命令行和文件…