Python卡尔曼滤波器OpenCV跟踪和预测物体的轨迹

news/2024/11/20 7:13:59/

模拟简单物体二维运动和预测位置

预测数学式

想象一下你正坐在一辆汽车里,在雾中行驶。 你几乎看不到路,但你有一个 GPS 系统可以告诉你你的速度和位置。 问题是,这个 GPS 并不完美; 它有时会产生噪音或不准确的读数。 您如何知道您的实际位置以及行驶速度?

卡尔曼滤波器提供了答案。它结合了:

  1. 系统(您的汽车)根据其模型预测什么(称为预测步骤)。
  2. 它接收到的噪声测量结果(在这个类比中是 GPS 读数)产生的估计值在统计上比预测或测量本身更可靠。

卡尔曼滤波器主要有两个步骤:

预测:
x ′ = A x + B u P ′ = A P k − 1 A T + Q \begin{aligned} x^{\prime} & =A x+B u \\ P^{\prime} & =A P_{k-1} A^T+Q \end{aligned} xP=Ax+Bu=APk1AT+Q

  • x ′ x^{\prime} x是预测状态。
  • A A A是状态转换模型。
  • B B B是控制输入模型。
  • u u u是控制向量。
  • P ′ P^{\prime} P是预测估计协方差。
  • Q Q Q是过程噪声协方差。

更新:
y = z − H x S = H P ′ H T + R K = P ′ H T S − 1 x = x ′ + K y P = ( I − K H ) P ′ \begin{aligned} y & =z-H x \\ S & =H P^{\prime} H^T+R \\ K & =P^{\prime} H^T S^{-1} \\ x & =x^{\prime}+K y \\ P & =(I-K H) P^{\prime} \end{aligned} ySKxP=zHx=HPHT+R=PHTS1=x+Ky=(IKH)P

  • y y y是残值
  • z z z是测量值
  • H H H是观测模型
  • S S S是协方差
  • R R R是测量噪声协方差
  • K K K是卡尔曼增益
  • x x x是是更新后的状态估计
  • P P P是是更新后的估计协方差

代码处理

安装OpenCV和Matplotlib。

使用 OpenCV 实现卡尔曼滤波器

OpenCV 提供了一个方便的 KalmanFilter 类,让我们可以实现卡尔曼滤波器,而不必陷入数学细节的困境。 在本演示中,我们将模拟对象的简单 2D 运动并使用卡尔曼滤波器来估计其位置。

让我们首先初始化 2D 运动的卡尔曼滤波器。

# Initialize the Kalman filter
kalman_2d = cv2.KalmanFilter(4, 2)
kalman_2d.measurementMatrix = np.array([[1, 0, 0, 0], [0, 1, 0, 0]], np.float32)
kalman_2d.transitionMatrix = np.array([[1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0], [0, 0, 0, 1]], np.float32)
kalman_2d.processNoiseCov = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], np.float32) * 1e-4

代码释义:

  • 我们系统的状态由 4x1 矩阵表示: [ x , y , x ˙ , y ˙ ] [x, y, \dot{x}, \dot{y}] [x,y,x˙,y˙] ,其中 x x x y y y 是二维坐标,并且 x ˙ \dot{x} x˙ y ˙ \dot{y} y˙ 分别表示 x 和 y 方向的速度。
  • measurementMatrix 将状态与测量联系起来。在我们的例子中,我们只测量位置,而不测量速度.。
  • TransitionMatrix 表示状态转换模型。为简单起见,我们假设速度恒定。
  • processNoiseCov 代表与我们的流程相关的噪声。
模拟物体运动和可视化

我们将模拟一个沿直线移动的物体,并在其测量中添加一些噪声。当物体移动时,我们将应用卡尔曼滤波器来估计其真实位置。

  • 我们有 200 个预测状态,每个状态都用一个矩阵表示。
  • 我们还有 200 个噪声测量,每个都由一个2*1 矩阵表示。

让我们可视化对象的真实路径、噪声测量值以及卡尔曼滤波器估计的路径。

fig, ax = plt.subplots(figsize=(10, 6))
ax.set_xlim(0, 4 * np.pi)
ax.set_ylim(-1.5, 1.5)
ax.set_title("Kalman Filter in 2D Motion Estimation")
ax.set_xlabel("X Position")
ax.set_ylabel("Y Position")# Plotting the true path, noisy measurements, and Kalman filter estimations
ax.plot(true_path[:, 0], true_path[:, 1], 'g-', label="True Path")
ax.scatter(np.array(measurements)[:, 0], np.array(measurements)[:, 1], c='red', s=20, label="Noisy Measurements")
ax.plot(np.array(predictions)[:, 0, 0], np.array(predictions)[:, 1, 0], 'b-', label="Kalman Filter Estimation")
ax.legend()
plt.show()

代码释义:

  • **True Path:**这是对象所采取的实际路径(尽管我们在现实场景中没有这个路径)。
  • **Noisy Measurements:**这些是我们从传感器获得的读数,这些读数被噪声破坏了。
  • **Kalman Filter Estimations:**这些是卡尔曼滤波器估计的位置,理想情况下应该接近真实路径。

这是我们模拟的 2D 运动的可视化:

预测真实物体的轨迹

跟踪视频人物

二维对象跟踪

源代码

参阅一 - 亚图跨际
参阅二 - 亚图跨际

http://www.ppmy.cn/news/1271514.html

相关文章

嵌入式开发、C++后端开发、C++音视频开发怎么选择?

嵌入式开发、C后端开发和C音视频开发的选择问题 近年来,随着互联网和物联网的快速发展,嵌入式开发、C后端开发和C音视频开发等职业领域也逐渐受到广泛关注。 对于有志于从事这些领域的人来说,如何做出选择呢?下面将从前景、薪酬和…

【vue】正则表达式限制input的输入:

文章目录 1、只能输入大小写字母、数字、下划线:/[^\w_]/g2、只能输入小写字母、数字、下划线:/[^a-z0-9_]/g3、只能输入数字和点:/[^\d.]/g4、只能输入小写字母、数字、下划线:/[^\u4e00-\u9fa5]/g5、只能输入数字:/\…

终端安全管理软件安装详细攻略来了

随着信息技术的不断发展,终端安全管理软件在企业和组织中发挥着越来越重要的作用。为了确保终端设备的安全和稳定运行,安装终端安全管理软件是必不可少的。以下是一份终端安全管理软件的安装详细攻略,供大家参考。 一、选择合适的软件 首先&…

linux系统的u盘/mmc/sd卡等的支持热插拔和自动挂载行为

1.了解mdev mdev是busybox自带的一个简化版的udev。udev是从Linux 2.6 内核系列开始的设备文件系统(DevFS)的替代品,是 Linux 内核的设备管理器。总的来说,它取代了 devfs 和 hotplug,负责管理 /dev 中的设备节点。同时…

HarmonyOS(十三)——详解自定义组件的生命周期

前言 自定义组件的生命周期回调函数用于通知用户该自定义组件的生命周期,这些回调函数是私有的,在运行时由开发框架在特定的时间进行调用,不能从应用程序中手动调用这些回调函数。 下图展示的是被Entry装饰的组件生命周期: 今…

AtCoder ABC周赛2023 12/10 (Sun) D题题解

目录 原题截图: 题目大意: 主要思路: 注: 代码: 原题截图: 题目大意: 给定两个 的矩阵 和 。 你每次可以交换矩阵 的相邻两行中的所有元素或是交换两列中的所有元素。 请问要使 变换至…

Photoshop插件3D Map Generator Geo的使用记录1(版本说明、安装卸载使用和高程数据生成3D地形图的准备工作)

3D Map Generator是一款强大的地图创建和定制化工具,具有以下特点和功能: 快速创建3D地图:用户可以通过该工具快速创建出高质量的3D地图,而无需具备专业的GIS或PS技能。支持多种图层类型:3D Map Generator支持多种图层…

小程序使用Nodejs作为服务端,Nodejs与与MYSQL数据库相连

小程序使用Nodejs作为服务端,Nodejs与MYSQL数据库相连 一、搭建环境二、配置Nodejs三、与小程序交互四、跨域处理/报错处理五、nodejs连接mysql数据库六、微信小程序连接nodejs报错七、小程序成功与服务端相连,且能操作数据库一、搭建环境 新建空文件夹:Win + R进入cmd命令界…