【Pytorch】Transposed Convolution

news/2024/11/21 1:43:41/

在这里插入图片描述

文章目录

  • 1 卷积
  • 2 反/逆卷积
  • 3 MaxUnpool / ConvTranspose
  • 4 encoder-decoder
  • 5 可视化

学习参考来自:

  • 详解逆卷积操作–Up-sampling with Transposed Convolution

  • PyTorch使用记录

  • https://github.com/naokishibuya/deep-learning/blob/master/python/transposed_convolution.ipynb

1 卷积

输入
在这里插入图片描述
卷积核

在这里插入图片描述

步长为 1,卷起来形式如下

在这里插入图片描述
输出的每个结果和输入的 9 个数值有关系

更直观的写成如下展开的矩阵乘形式

在这里插入图片描述

在这里插入图片描述
填零和 stride 与 kernel size 有关

2 反/逆卷积

相比逆卷积 (Deconvolution),转置卷积 (Transposed Convolution) 是一个更为合适的叫法

上述过程反过来,输入的一个数值与输出的 9 个数值有关

在这里插入图片描述

把原来的 W W W 转置一下即可实现该功能,当然转置后的 W W W 也是需要去学习更新的

在这里插入图片描述

矩阵乘可以看到,输入的每个值影响到了输出的 9 个值

3 MaxUnpool / ConvTranspose

搞个代码简单的看看效果

"maxpool"
m = nn.MaxPool2d(kernel_size=2, stride=2, padding=0, return_indices=True)
input_data = torch.tensor([[[[1, 2, 8, 7],[3, 4, 6, 5],[9, 10, 16, 15],[13, 14, 12, 11]
]]], dtype=torch.float32)
print(input_data.shape)  # torch.Size([1, 1, 4, 4])out, indices = m(input_data)
print(out, "\n", indices)

output

tensor([[[[ 4.,  8.],[14., 16.]]]]) tensor([[[[ 5,  2],[13, 10]]]])

在这里插入图片描述

"maxuppooling"
n = nn.MaxUnpool2d(kernel_size=2, stride=2, padding=0)
out = n(out, indices, output_size=input_data.size())
print(out)

output

tensor([[[[ 0.,  0.,  8.,  0.],[ 0.,  4.,  0.,  0.],[ 0.,  0., 16.,  0.],[ 0., 14.,  0.,  0.]]]])

在这里插入图片描述

在使用 MaxUnpool 的时候要特别注意, 需要在 maxpool 的时候保存 indices. 否则会报错

下面看看其在网络中的简单应用

import torch.nn as nn
import torch"MaxUnpool"
class ConvDAE(nn.Module):def __init__(self):super().__init__()# input: batch x 3 x 32 x 32 -> output: batch x 16 x 16 x 16self.encoder = nn.Sequential(nn.Conv2d(3, 16, 3, stride=1, padding=1),  # batch x 16 x 32 x 32nn.ReLU(),nn.BatchNorm2d(16),nn.MaxPool2d(2, stride=2, return_indices=True))self.unpool = nn.MaxUnpool2d(2, stride=2, padding=0)self.decoder = nn.Sequential(nn.ConvTranspose2d(16, 16, 3, stride=2, padding=1, output_padding=1),nn.ReLU(),nn.BatchNorm2d(16),nn.ConvTranspose2d(16, 3, 3, stride=1, padding=1, output_padding=0),nn.ReLU())def forward(self, x):out, indices = self.encoder(x)  # torch.Size([1, 16, 16, 16])out = self.unpool(out, indices)  # torch.Size([1, 16, 32, 32])out = self.decoder(out)  # torch.Size([1, 3, 64, 64])return out
if __name__ == "__main__":DAE = ConvDAE()x = torch.randn((1, 3, 32, 32))DAE(x)

网络结构比较简单,encoder 降低图片分辨率至 1/2,通道数不变

unpool 反 max pooling 恢复图片分辨率

decoder 反卷积提升图片分辨率

4 encoder-decoder

再看一个稍微复杂的 encoder-decoder 结构

class autoencoder(nn.Module):def __init__(self):super(autoencoder, self).__init__()# -------# encode# -------self.encode1 = nn.Sequential(# 第一层nn.Conv1d(kernel_size=25, in_channels=1, out_channels=32, stride=1, padding=12), # (1,784)->(32,784)nn.BatchNorm1d(32), # 加上BN的结果nn.ReLU(),nn.MaxPool1d(kernel_size=3, stride=3, padding=1, return_indices=True), # (32,784)->(32,262))self.encode2 = nn.Sequential(# 第二层nn.Conv1d(kernel_size=25, in_channels=32, out_channels=64, stride=1, padding=12), # (32,262)->(64,262)nn.BatchNorm1d(64),nn.ReLU(),nn.MaxPool1d(kernel_size=3, stride=3, padding=1, return_indices=True), # (batchsize,64,262)->(batchsize,64,88))self.encode3 = nn.Sequential(nn.Linear(in_features=88*64, out_features=1024),nn.Linear(in_features=1024, out_features=30))# -------# decode# -------self.unpooling1 = nn.MaxUnpool1d(kernel_size=3, stride=3, padding=1) # (batchsize,64,262)<-(batchsize,64,88)self.unpooling2 = nn.MaxUnpool1d(kernel_size=3, stride=3, padding=1) # (32,784)<-(32,262)self.decode1 = nn.Sequential(# 第一层nn.ReLU(),nn.BatchNorm1d(64),nn.ConvTranspose1d(kernel_size=25, in_channels=64, out_channels=32, stride=1, padding=12), # (32,262)<-(64,262))# 第二层self.decode2 = nn.Sequential(nn.ReLU(),nn.BatchNorm1d(32), # 加上BN的结果nn.ConvTranspose1d(kernel_size=25, in_channels=32, out_channels=1, stride=1, padding=12), # (1,784)<-(32,784))self.decode3 = nn.Sequential(nn.Linear(in_features=30, out_features=1024),nn.Linear(in_features=1024, out_features=88*64))def forward(self, x):# encodex = x.view(x.size(0),1,-1) # 将图片摊平 torch.Size([1, 1, 784])x,indices1 = self.encode1(x) # 卷积层 torch.Size([1, 32, 262])x,indices2 = self.encode2(x) # 卷积层 torch.Size([1, 64, 88])x = x.view(x.size(0), -1) # 展开 torch.Size([1, 5632])x = self.encode3(x) # 全连接层 torch.Size([1, 30])# decodex = self.decode3(x) # torch.Size([1, 5632])x = x.view(x.size(0), 64, 88)  # torch.Size([1, 64, 88])x = self.unpooling1(x, indices2)  # torch.Size([1, 64, 262])x = self.decode1(x)  # torch.Size([1, 32, 262])x = self.unpooling2(x, indices1) # torch.Size([1, 32, 784])x = self.decode2(x)  # torch.Size([1, 1, 784])return xif __name__ == "__main__":x = torch.randn((1, 1, 28, 28))autoencoder = autoencoder()autoencoder(x)

结构草图如下所示

请添加图片描述

主要展示的是 nn.ConvTransposenn.MaxUnpool 的运用,nn.MaxUnpool 要记得 indices

应用主要是 1d,2d 同理可以拓展

5 可视化

简单的实验,输入 MNIST 原始图片,conv+max pooling 下采样,maxunpooling+transposed conv 回原图,看看效果

载入相关库,载入数据集

import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import numpy as np
import cv2
import matplotlib.pyplot as plt
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Hyper-parameters
num_epochs = 5
batch_size = 100
learning_rate = 0.001# MNIST dataset
train_dataset = torchvision.datasets.MNIST(root='./',train=True,transform=transforms.ToTensor(),download=True)
test_dataset = torchvision.datasets.MNIST(root='./',train=False,transform=transforms.ToTensor())
# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,batch_size=batch_size,shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,batch_size=batch_size,shuffle=False)

图像可视化的前期工作

def imshow(img):npimg = img.numpy()plt.imshow(np.transpose(npimg, (1, 2, 0)))

搭建神经网络,及其初始化

# 搭建网络
class CNNMNIST(nn.Module):def __init__(self):super(CNNMNIST,self).__init__()self.conv1 = nn.Conv2d(in_channels=1,out_channels=1,kernel_size=3,stride=1,padding=0)self.pool1 = nn.MaxPool2d(kernel_size=2,stride=2,padding=0,return_indices=True)self.unpool1 = nn.MaxUnpool2d(kernel_size=2,stride=2,padding=0)self.unconv1 = nn.ConvTranspose2d(in_channels=1, out_channels=1, kernel_size=3, stride=1, padding=0)def forward(self,x):# encodeout = self.conv1(x)  # torch.Size([100, 1, 26, 26])out,indices = self.pool1(out)  # torch.Size([100, 1, 13, 13])# deocdeout = self.unpool1(out,indices,output_size=out1.size())  # torch.Size([100, 1, 26, 26])out = self.unconv1(out)  # torch.Size([100, 1, 28, 28])return out# 网络的初始化
model = CNNMNIST().to(device)
print(model)

output

CNNMNIST((conv1): Conv2d(1, 1, kernel_size=(3, 3), stride=(1, 1))(pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(unpool1): MaxUnpool2d(kernel_size=(2, 2), stride=(2, 2), padding=(0, 0))(unconv1): ConvTranspose2d(1, 1, kernel_size=(3, 3), stride=(1, 1))
)

网络训练与保存

# 定义优化器和损失函数
criterion = nn.MSELoss(reduction='mean')
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# 进行训练
model.train()
total_step = len(train_loader)
for epoch in range(num_epochs):for i, (images, labels) in enumerate(train_loader):# Move tensors to the configured deviceimages = images.to(device)# Forward passoutputs = model(images)loss = criterion(outputs, images)# Backward and optimizeoptimizer.zero_grad()loss.backward()optimizer.step()if (i+1) % 100 == 0:# 计算Lossprint('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, total_step, loss.item()))"save model"
torch.save(model, "model.pkl")

output

Epoch [1/5], Step [100/600], Loss: 0.0764
Epoch [1/5], Step [200/600], Loss: 0.0549
Epoch [1/5], Step [300/600], Loss: 0.0457
Epoch [1/5], Step [400/600], Loss: 0.0468
Epoch [1/5], Step [500/600], Loss: 0.0443
Epoch [1/5], Step [600/600], Loss: 0.0452
Epoch [2/5], Step [100/600], Loss: 0.0445
Epoch [2/5], Step [200/600], Loss: 0.0427
Epoch [2/5], Step [300/600], Loss: 0.0407
Epoch [2/5], Step [400/600], Loss: 0.0432
Epoch [2/5], Step [500/600], Loss: 0.0414
Epoch [2/5], Step [600/600], Loss: 0.0413
Epoch [3/5], Step [100/600], Loss: 0.0415
Epoch [3/5], Step [200/600], Loss: 0.0420
Epoch [3/5], Step [300/600], Loss: 0.0425
Epoch [3/5], Step [400/600], Loss: 0.0413
Epoch [3/5], Step [500/600], Loss: 0.0416
Epoch [3/5], Step [600/600], Loss: 0.0414
Epoch [4/5], Step [100/600], Loss: 0.0401
Epoch [4/5], Step [200/600], Loss: 0.0409
Epoch [4/5], Step [300/600], Loss: 0.0418
Epoch [4/5], Step [400/600], Loss: 0.0412
Epoch [4/5], Step [500/600], Loss: 0.0407
Epoch [4/5], Step [600/600], Loss: 0.0405
Epoch [5/5], Step [100/600], Loss: 0.0411
Epoch [5/5], Step [200/600], Loss: 0.0412
Epoch [5/5], Step [300/600], Loss: 0.0406
Epoch [5/5], Step [400/600], Loss: 0.0407
Epoch [5/5], Step [500/600], Loss: 0.0409
Epoch [5/5], Step [600/600], Loss: 0.0401

模型载入,可视化结果

"load model"
model = torch.load("model.pkl")"visual"
dataiter = iter(train_loader)
images, lables = dataiter.next()imshow(torchvision.utils.make_grid(images, nrow=10))
plt.show()images = images.to(device)# Forward pass
outputs = model(images)
imshow(torchvision.utils.make_grid(outputs.cpu().squeeze(0), nrow=10))
plt.show()

MNIST 多图的可视化,可以借鉴借鉴,核心代码为 torchvision.utils.make_grid

部分输入
请添加图片描述
部分输出
请添加图片描述

换成纯卷积的失真率更少

class CNNMNIST(nn.Module):def __init__(self):super(CNNMNIST,self).__init__()self.conv1 = nn.Conv2d(in_channels=1,out_channels=1,kernel_size=3,stride=1,padding=0)self.conv2 = nn.Conv2d(in_channels=1,out_channels=1,kernel_size=2,stride=2,padding=0)self.unconv1 = nn.ConvTranspose2d(in_channels=1, out_channels=1, kernel_size=2, stride=2, padding=0)self.unconv2 = nn.ConvTranspose2d(in_channels=1, out_channels=1, kernel_size=3, stride=1, padding=0)def forward(self,x):# encodeout = self.conv1(x)  # torch.Size([100, 1, 26, 26])out = self.conv2(out)  # torch.Size([100, 1, 13, 13])# deocdeout = self.unconv1(out)  # torch.Size([100, 1, 26, 26])out = self.unconv2(out)  # torch.Size([100, 1, 28, 28])return out

输入
请添加图片描述

输出
请添加图片描述


http://www.ppmy.cn/news/1271447.html

相关文章

飞天使-docker知识点1-安装docker以及手动制作镜像

文章目录 docker 的好处安装dockerdocker imagesimages 导出与导出删除镜像,指定端口启用容器启停批量关闭正在运行的容器 docker 的镜像制作之下载并安装好nginxdocker 的镜像制作之提交镜像 docker 的好处 快速部署&#xff1a;短时间内可以部署成百上千个应用&#xff0c;更…

LSTM 双向 Bi-LSTM

目录 一.Bi-LSTM介绍 二.Bi-LSTM结构 Bi-LSTM 代码实例 一.Bi-LSTM介绍 由于LSTM只能从序列里由前往后预测,为了既能够从前往后预测,也能从后往前预测,Bi-LSTM便被发明了出来。简单来说,BiLSTM就是由前向LSTM与后向LSTM组合而成。 二.Bi-LSTM结构 转自:

elementui el-pagination分页组件查询的时候当前页不更新

elementui el-pagination分页组件查询的时候当前页不更新 <mypagination v-if"pageshow" :currentPage.sync"pageNum" :pagesize"pageSize" :pagetotal"pageTotal" pagefunc"pageFunc"></mypagination>1.在加的…

冯丹教授:近数据处理新型盘框等技术创新,加速IDC向Diskless架构演进

日前&#xff0c;在中国深圳举办的第20届华为全球分析师大会&#xff0c;长江学者特聘教授、华中科技大学计算机科学与技术学院院长冯丹对数据中心Diskless架构及近数据处理发展趋势做出了权威解读&#xff0c;为传统云存储、大数据等计算域和存储域不完全分离造成的资源浪费&a…

FLStudio20最新2024年中文汉化版

FLStudio21.0.2.3中文版完整下载是最好的音乐开发和制作软件也称为水果循环。它是最受欢迎的工作室&#xff0c;因为它包含了一个主要的听觉工作场所。最新FL有不同的功能&#xff0c;如它包含图形和音乐音序器&#xff0c;帮助您使完美的配乐在一个美妙的方式。此程序可用于Mi…

Visual Studio编辑器中C4996 ‘scanf‘: This function or variable may be unsafe.问题解决方案

目录 ​编辑 题目&#xff1a;简单的ab 1. 题目描述 2. 输入格式 3. 输出格式 4. 样例输入 5. 样例输出 6. 解题思路 7. 代码示例 8. 报错解决 方案一 方案二 方案三 方案四 总结 题目&#xff1a;简单的ab 1. 题目描述 输入两个整数a和b&#xff0c;…

【vim 学习系列文章 13.1 -- 自动命令autocmd 根据文件类型设置vim参数】

文章目录 autocmd 根据文件类型配置vim参数vim 文本类型 autocmd 根据文件类型配置vim参数 在 Vim 中&#xff0c;你可以使用 autocmd &#xff08;自动命令&#xff09;来根据文件类型自动执行特定的函数。首先&#xff0c;你需要定义这些函数&#xff0c;然后使用 autocmd 与…

IDEA版SSM入门到实战(Maven+MyBatis+Spring+SpringMVC) -Spring中bean的作用域和bean的生命周期

第一章 Spring中bean的作用域 1.1 语法 在bean标签中添加属性&#xff1a;scope属性即可 1.2 四个作用域 singleton【默认值】&#xff1a;单例【在容器中只有一个对象】 对象创建时机&#xff1a;创建容器对象时&#xff0c;创建对象执行 prototype&#xff1a;多例【在容…