Elasticsearch(ES)概述

news/2024/11/8 9:39:31/

文章目录

  • 一.什么是Elasticsearch?
    • 1.正向索引和倒排索引
    • 2.Mysql和ES的概念对比
    • 3.安装elasticsearch、kibana
  • 二.IK分词器
  • 三.索引库操作
  • 四.文档操作
  • 五.RestClient操作索引库
    • 1.初始化RestClient
    • 2.创建索引库
    • 3.删除索引库
    • 4.判断索引库是否存在
  • 六.RestClient操作文档
    • 1.新增文档
    • 2.查询数据
    • 3.修改数据
    • 4.删除数据
    • 5.批量插入数据
  • 七.DSL查询文档
  • 八.RestClient检索查询文档


一.什么是Elasticsearch?

Elasticsearch 是一个分布式、高扩展、高实时的搜索与数据分析引擎。它能很方便的使大量数据具有搜索、分析和探索的能力。充分利用Elasticsearch的水平伸缩性,能使数据在生产环境变得更有价值。

Elasticsearch是一款非常强大的开源搜索引擎,可以帮助我们从海量数据中快速找到需要的内容。

Elasticsearch结合kibana、Logstash、Beats,也就是elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域。

Elasticsearch是elastic stack的核心(不可替换),负责存储、搜索、分析数据。

在这里插入图片描述


1.正向索引和倒排索引

文档(document):每条数据就是一个文档

词条(term):文档按照语义分成的词语


正向索引(Forward Index):
定义: 正向索引是根据文档-词项对的方式建立的索引。每个文档都有一个记录,其中包含了文档中的所有词项及其位置信息。

例如Mysql就是使用的正向索引,根据id检索一个文档非常快,但是根据文档中某个字段检索文档只能逐条检索


倒排索引(Inverted Index):
定义: 倒排索引是根据词项-文档对的方式建立的索引。每个词项都有一个记录,其中包含了包含该词项的所有文档及其位置信息。即对文档内容分词,对词条创建索引,并记录词条所在文档的信息。查询时先根据词条查询到文档id,而后获取到文档

Elasticsearch就使用了倒排索引,将文档按照语义分成词条,根据词条建立词条表,这样就形成了词条-文档的结构,导致检索字段时非常快

倒排索引中包含两部分内容:

  • 词条词典(Term Dictionary):记录所有词条,以及词条与倒排列表(Posting List)之间的关系,会给词条创建索引,提高查询和插入效率

  • 倒排列表(Posting List):记录词条所在的文档id、词条出现频率 、词条在文档中的位置等信息

    • 文档id:用于快速获取文档

    • 词条频率(TF):文档在词条出现的次数,用于评分

在这里插入图片描述

文档:

elasticsearch是面向文档存储的,可以是数据库中的一条商品数据,一个订单信息。
文档数据会被序列化为json格式后存储在elasticsearch中。

索引:

相同类型的文档的集合

映射

索引中文档的字段约束信息,类似表的结构约束

在这里插入图片描述


2.Mysql和ES的概念对比

在这里插入图片描述

Mysql:擅长事务类型(ACID特性)操作,可以确保数据的安全和一致性

Elasticsearch:擅长海量数据的搜索、分析、计算

总而言之:

  • 正向索引适合于文档级别的查询,因为它直接提供了文档中的词项信息。

  • 倒排索引适合于词项级别的查询,因为它直接提供了包含某个词项的文档信息。

3.安装elasticsearch、kibana

通过Dokcer拉取镜像安装即可

二.IK分词器

ES在创建倒排索引时需要对文档分词;在搜索时,需要对用户输入内容分词。但默认的分词规则对中文处理并不友好。故需要更好的分词策略:IK分词器

安装(安装到es-plugins/_data即可):IK分词器官方地址,重启es后IK分词器生效

ik分词器包含两种模式:

  • ik_smart:最少切分,粗粒度
  • ik_max_word:最细切分,细粒度

IK分词器-拓展词库

IK分词器虽然说按照字典查找词语进行组合,但是随着网络文化发展和新词的逐渐产生,IK分词器不可能马上更新这些词汇,这时候就需要进行拓展词汇库和增加禁用词汇

要拓展ik分词器的词库,只需要修改一个ik分词器目录中的config目录中的IkAnalyzer.cfg.xml文件:
在这里插入图片描述

在ext.dic文件中添加拓展词汇

在这里插入图片描述

在stopword.dic文件下添加禁用词汇

在这里插入图片描述

三.索引库操作

mapping属性

mapping是对索引库中文档的约束,常见的mapping属性包括:

  • type:字段数据类型,常见的简单类型有:

    • 字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址)

    • 数值:long、integer、short、byte、double、float

    • 布尔:boolean

    • 日期:date

    • 对象:object

  • index:是否创建索引,默认为true

  • analyzer:使用哪种分词器

  • properties:该字段的子字段


创建索引库

PUT /索引库名称
{"mappings": {"properties": {"字段名":{"type": "text","analyzer": "ik_smart"},"字段名2":{"type": "keyword","index": "false"},"字段名3":{"properties": {"子字段": {"type": "keyword"}}},// ...略}}
}

查看索引库语法:

GET /索引库名 

删除索引库的语法:

DELETE /索引库名 

修改索引库

索引库和mapping一旦创建无法修改,但是可以添加新的字段,语法如下:

PUT /索引库名/_mapping
{"properties": {"新字段名":{"type": "integer"}}
}

四.文档操作

添加文档

POST /索引库名/_doc/文档id
{"字段1": "值1","字段2": "值2","字段3": {"子属性1": "值3","子属性2": "值4"},// ...
}

查看文档语法:

GET /索引库名/_doc/文档id 

删除文档:

DELETE /索引库名/_doc/文档id 

修改文档

方式一:全量修改,会删除旧文档,添加新文档

PUT /索引库名/_doc/文档id
{"字段1": "值1","字段2": "值2",// ... 略
}

方式二:增量修改,修改指定字段值

POST /索引库名/_update/文档id
{"doc": {"字段名": "新的值",}
}

文档操作-动态映射

当我们向ES中插入文档时,如果文档中字段没有对应的mapping,ES会帮助我们字段设置mapping,规则如下:

在这里插入图片描述

五.RestClient操作索引库

什么是RestClient
ES官方提供了各种不同语言的客户端,用来操作ES。这些客户端的本质就是组装DSL语句,通过http请求发送给ES。

使用:

1.初始化RestClient

1.引入es的RestHighLevelClient依赖:

		<dependency><groupId>org.elasticsearch.client</groupId><artifactId>elasticsearch-rest-high-level-client</artifactId></dependency>

2.可以发现客户端的版本号,引入的依赖版本必须和客户端一致(不一致则需修改)

在这里插入图片描述

修改版本号

	<properties><java.version>1.8</java.version><elasticsearch.version>客户端版本号</elasticsearch.version></properties>

3.初始化RestHighLevelClient:

	private RestHighLevelClient client;//测试类中使用@BeforeEach注解来标记一个方法,该方法将在每个测试方法执行之前执行(@AfterEach同理)@BeforeEachvoid setUp(){this.client=new RestHighLevelClient(RestClient.builder(HttpHost.create("自己的Linux局域网ip地址:9200")));}@AfterEachvoid tearDown() throws IOException {this.client.close();}

2.创建索引库

	@Testvoid testCreateHotelIndex() throws IOException {CreateIndexRequest request = new CreateIndexRequest("索引库名");request.source("DSL语句", XContentType.JSON);client.indices().create(request, RequestOptions.DEFAULT);}

其中:indices()包含了所有操作索引库的API

3.删除索引库

	@Testvoid testDeleteHotelIndex() throws IOException {   // 1.创建Request对象DeleteIndexRequest request = new DeleteIndexRequest("索引库名");// 2.发起请求client.indices().delete(request, RequestOptions.DEFAULT);
}

4.判断索引库是否存在

	@Testvoid testExistsHotelIndex() throws IOException {    // 1.创建Request对象    GetIndexRequest request = new GetIndexRequest("索引库名");    // 2.发起请求     boolean exists = client.indices().exists(request, RequestOptions.DEFAULT);    // 3.输出    System.out.println(exists);
}

六.RestClient操作文档

1.新增文档

IndexRequest request = new IndexRequest("索引库名").id(设置id);request.source(JSON文档, XContentType.JSON);client.index(request, RequestOptions.DEFAULT);

2.查询数据

GetRequest request = new GetRequest(索引库名, id);    GetResponse response = client.get(request, RequestOptions.DEFAULT);   String json = response.getSourceAsString();

3.修改数据

UpdateRequest request = new UpdateRequest(索引库名,id);request.doc("键1","值1","键2","值2"...);client.update(request, RequestOptions.DEFAULT);

4.删除数据

DeleteRequest request = new DeleteRequest(索引库名,id);client.delete(request, RequestOptions.DEFAULT);

5.批量插入数据

request.add(new IndexRequest(索引库名).id(id1).source(JSON文档1, XContentType.JSON));
request.add(new IndexRequest(索引库名).id(id2).source(JSON文档2, XContentType.JSON));
request.add(new IndexRequest(索引库名).id(id3).source(JSON文档3, XContentType.JSON));
//request可以添加多个IndexRequest
client.bulk(request, RequestOptions.DEFAULT);

七.DSL查询文档

DSL Query的分类

Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括:

  • 查询所有:查询出所有数据,一般测试用。例如:match_all
  • 全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如:
    • match_query
    • multi_match_query
  • 精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期、boolean等类型字段。例如:
    • ids
    • range
    • term
  • 地理(geo)查询:根据经纬度查询。例如:
    • geo_distance
    • geo_bounding_box
  • 复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件。例如:
    • bool
    • function_score

查询的基本语法如下:

GET /indexName/_search
{"query": {"查询类型": {"查询条件": "条件值"}}
}

全文检索查询

match查询:全文检索查询的一种,会对用户输入内容分词,然后去倒排索引库检索,语法:

GET /indexName/_search
{"query": {"match": {"FIELD": "TEXT"}}
}

multi_match:与match查询类似,只不过允许同时查询多个字段,语法:

GET /indexName/_search
{"query": {"multi_match": {"query": "TEXT","fields": ["FIELD1", " FIELD12"]}}
}

需要注意的是:根据多个字段查询,参与查询字段越多,查询性能越差,建议使用多个字段拷贝到一个字段进行多字段的查询

精确查询

精确查询一般是查找keyword、数值、日期、boolean等类型字段。所以不会对搜索条件分词。常见的有:

  • term:根据词条精确值查询
  • range:根据的范围查询

term查询:

// term查询
GET /indexName/_search
{"query": {"term": {"FIELD": {"value": "VALUE"}}}
}

range查询:

// range查询
GET /indexName/_search
{"query": {"range": {"FIELD": {"gte": 10,"lte": 20}}}
}

地理查询

geo_bounding_box(不常用):查询geo_point值落在某个矩形范围的所有文档

// geo_bounding_box查询
GET /indexName/_search
{"query": {"geo_bounding_box": {"FIELD": {"top_left": {"lat": 31.1,"lon": 121.5},"bottom_right": {"lat": 30.9,"lon": 121.7}}}}
}

geo_distance(常用):查询到指定中心点小于某个距离值的所有文档

// geo_distance 查询
GET /indexName/_search
{"query": {"geo_distance": {"distance": "15km","FIELD": "31.21,121.5"}}
}

复合查询
复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑,例如:

fuction score:算分函数查询,可以控制文档相关性算分,控制文档排名。例如百度竞价

当我们利用match查询时,文档结果会根据与搜索词条的关联度打分(_score),返回结果时按照分值降序排列。

常见的三个算分函数:

在这里插入图片描述

TF-IDF:在elasticsearch5.0之前,会随着词频增加而越来越大

BM25:在elasticsearch5.0之后,会随着词频增加而增大,但增长曲线会趋于水平

Function Score Query

使用 function score query,可以修改文档的相关性算分(query score),根据新得到的算分排序。

在这里插入图片描述
function score query定义的三要素:

  • 过滤条件:哪些文档要加分
  • 算分函数:如何计算function score
  • 加权方式:function score 与 query score如何运算

复合查询 Boolean Query
布尔查询是一个或多个查询子句的组合。子查询的组合方式有:

  • must:必须匹配每个子查询,类似“与”
  • should:选择性匹配子查询,类似“或”
  • must_not:必须不匹配,不参与算分,类似“非”
  • filter:必须匹配,不参与算分

例子:搜索名字包含“如家”,价格不高于400,在坐标31.21,121.5周围10km范围内的酒店。

GET /hotel/_search
{"query": {"bool": {"must": [{"match": {"name": "如家"}}],"must_not": [{"range": { "price": {"gt": 400}}}],"filter": [{"geo_distance": {"distance": "10km", "location": {"lat": 31.21, "lon": 121.5}}}]}}
}

搜索结果处理

1.排序
elasticsearch支持对搜索结果排序,默认是根据相关度算分(_score)来排序。可以排序字段类型有:keyword类型、数值类型、地理坐标类型、日期类型等。

GET /indexName/_search
{"query": {"match_all": {}},"sort": [{"FIELD": "desc"  // 排序字段和排序方式ASC、DESC}]
}
GET /indexName/_search
{"query": {"match_all": {}},"sort": [{"_geo_distance" : {"FIELD" : "纬度,经度","order" : "asc","unit" : "km"}}]
}

2.分页
elasticsearch 默认情况下只返回top10的数据。而如果要查询更多数据就需要修改分页参数了。

elasticsearch中通过修改from、size参数来控制要返回的分页结果:

GET /hotel/_search
{"query": {"match_all": {}},"from": 990, // 分页开始的位置,默认为0"size": 10, // 期望获取的文档总数"sort": [{"price": "asc"}]
}

深度分页问题(ES设定结果集查询的上限是10000)

针对深度分页,ES提供了两种解决方案:

  • search after:分页时需要排序,原理是从上一次的排序值开始,查询下一页数据。官方推荐使用的方式。
  • scroll:原理将排序数据形成快照,保存在内存。官方已经不推荐使用。

3.高亮
高亮:就是在搜索结果中把搜索关键字突出显示。

原理是这样的:

将搜索结果中的关键字用标签标记出来

在页面中给标签添加css样式

语法:

GET /hotel/_search
{"query": {"match": {"FIELD": "TEXT"}},"highlight": {"fields": { "FIELD": {// 指定要高亮的字段"pre_tags": "<em>",  // 用来标记高亮字段的前置标签"post_tags": "</em>" // 用来标记高亮字段的后置标签}}}
}

八.RestClient检索查询文档

需要说明的是,这里的RestClient查询文档不同于上面使用的GetRequest查询,GetRequest查询是简单查询,传入的参数只限制以下几个:

在这里插入图片描述

1.match_all查询

在这里插入图片描述
在这里插入图片描述

	@Test
void testMatchAll() throws IOException {SearchRequest request = new SearchRequest("hotel");request.source().query(QueryBuilders.matchAllQuery());SearchResponse response = client.search(request, RequestOptions.DEFAULT);SearchHits searchHits = response.getHits();long total = searchHits.getTotalHits().value;System.out.println("共搜索到" + total + "条数据");SearchHit[] hits = searchHits.getHits();for (SearchHit hit : hits) {String json = hit.getSourceAsString();HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);System.out.println("hotelDoc=" + hotelDoc);}}

可以把request.source()理解为查询的整体,在source()下又有sort(),highlighter(),size(),from(),query()等等,这些方法均是已经学习过的DSL查询的query()的平级,即RestAPI中其中构建DSL是通过HighLevelRestClient中的resource()来实现的,其中包含了查询、排序、分页、高亮等所有功能

RestAPI中其中构建查询条件的核心部分是由一个名为QueryBuilders的工具类提供的,其中包含了各种查询方法

在这里插入图片描述

2.全文检索查询

全文检索的match和multi_match查询与match_all的API基本一致。==差别是查询条件,也就是query的部分。==同样是利用QueryBuilders提供的方法:
在这里插入图片描述

其实就是query里面的参数不同,对应到java代码中就是QueryBuilders调用的API不同而已

// 单字段查询
QueryBuilders.matchQuery("字段", "字符串");
// 多字段查询
QueryBuilders.multiMatchQuery("字符串", "字段1", "字段2");

3.精确查询

精确查询常见的有term查询和range查询

// 词条查询
QueryBuilders.termQuery("字段", "字符串"); 
// 范围查询
QueryBuilders.rangeQuery("字段").gte(xxx).lte(xxx);

4.复合查询-boolean query
精确查询常见的有term查询和range查询,由于在DSL语句中bool包含了多个属性,故需要先创建一个BoolQueryBuilder对象,依次向对象中添加条件属性

// 创建布尔查询
BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
// 添加must条件
boolQuery.must(QueryBuilders.termQuery("字段", "字符串")); 
// 添加filter条件
boolQuery.filter(QueryBuilders.rangeQuery("字段").lte(xxx));
//添加must_not条件
boolQuery.mustNot((QueryBuilders.xxx);

5.排序和分页
搜索结果的排序和分页是与query同级的参数,故改变source()调用的API即可

request.source().from(起始页码).size(每页显示条数);request.source().sort("字段", SortOrder.ASC);//升序

6.高亮

request.source().highlighter(new HighlightBuilder()        .field("字段")        // 是否需要与查询字段匹配        .requireFieldMatch(false)//不填写pre_tags和post_tags属性默认为<em>标签
);

高亮的结果处理(其实就是获取每一个hit里面的highlight值,就可以取出高亮字段中的值了):
在这里插入图片描述


http://www.ppmy.cn/news/1255085.html

相关文章

Sharding-Jdbc(3):Sharding-Jdbc分表

1 分表分库 LogicTable 数据分片的逻辑表&#xff0c;对于水平拆分的数据库(表)&#xff0c;同一类表的总称。 订单信息表拆分为2张表,分别是t_order_0、t_order_1&#xff0c;他们的逻辑表名为t_order。 ActualTable 在分片的数据库中真实存在的物理表。即上个示例中的t_…

[c]求逆序数

#include<stdio.h> int main() {int n,i,count;scanf("%d",&n);int arr[n];count0;for(i0;i<n-1;i){scanf("%d",&arr[i]);}for(int j0;j<n-2;j)//注意是小于等于n-2&#xff0c;因为倒数第一个元素后面没有数了&#xff0c;不需要比较…

SSM项目实战-POJO设计

1、schedule_db.sql CREATE DATABASE schedule_db CHARACTER SET utf8 ;USE schedule_db;CREATE TABLE sys_schedule (sid int NOT NULL AUTO_INCREMENT COMMENT 日程id,uid int DEFAULT NULL COMMENT 用户id,title varchar(50) DEFAULT NULL COMMENT 标题,completed int DEFAU…

右值引用和移动语句(C++11)

左值引用和右值引用 回顾引用 我们之前就了解到了左值引用&#xff0c;首先我们要了解引用在编译器底层其实就是指针。具体来说&#xff0c;当声明引用时&#xff0c;编译器会在底层生成一个指针来表示引用&#xff0c;但在代码编写和使用时&#xff0c;我们可以像使用变量类…

用Elasticsearch搜索匹配功能实现基于地理位置的查询

1.Redis,MongoDB,Elasticsearch实现地理位置查询比较 1.1 Redis: 优点&#xff1a;Redis提供了地理空间索引功能&#xff0c;可以通过Geo数据类型进行地理位置查询。这使得Redis在处理地理位置查询时非常高效。 缺点&#xff1a; Redis的地理空间索引功能相对简单&#xff0…

[Electron] 将应用打包成供Ubuntu、Debian平台下安装的deb包

​ 在使用 electron-packager 工具输出 linux 平台的 electron app 后&#xff0c;可以使用 electron-installer-debian 工具把 app 打包成供Ubuntu平台下安装的 debian 包。 electron-installer-debian是一个用于创建 Debian Linux&#xff08;.deb&#xff09;安装包的开发工…

中断方式的数据接收2

Echo实验 回忆之前的实验因为数据处理的过程可以瞬间完成所以可以把数据处理的操作放在中断服务函数中执行 但是数据处理要是时间过长就将数据缓存处理 当使用中断方式接收数据的时候 一般有两种方式 数据处理的时间较短可放在中断服务函数内处理&#xff08;就地处理&#…

Golang 原生Rpc Server实现

Golang 原生Rpc Server实现 引言源码解析服务端数据结构服务注册请求处理 客户端数据结构建立连接请求调用 延伸异步调用定制服务名采用TPC协议建立连接自定义编码格式自定义服务器 参考 引言 本文我们来看看golang原生rpc库的实现 , 首先来看一下golang rpc库的demo案例: 服…