【黑马甄选离线数仓day04_维度域开发】

news/2024/11/24 6:33:23/

1. 维度主题表数据导出

1.1 PostgreSQL介绍

PostgreSQL 是一个功能强大的开源对象关系数据库系统,它使用和扩展了 SQL 语言,并结合了许多安全存储和扩展最复杂数据工作负载的功能。

官方网址:PostgreSQL: The world's most advanced open source database 中文文档:http://www.postgres.cn/docs/14/index.html

PostgreSQL数据库是目前功能最强大的开源数据库,它是最接近工业标准SQL92的查询语言,至少实现了SQL:2011标准中要求的179项主要功能中的160项(注:目前没有哪个数据库管理系统能完全实现SQL:2011标准中的所有主要功能)。

1.2 PostgreSQL基本操作

  • 登录客户端

#psql -h 服务器 -p 端口地址 -d 数据库 -U 用户名     
psql -h 127.0.0.1 -p 5432 -d postgres -U postgres
#密码:itcast123
  • 基本增删改查:

select datname from pg_database; 或 \l   查看所有的库        

切换数据库: \c 数据库名称

查看所有表: \d

查看表结构: SELECT column_name FROM information_schema.columns WHERE table_name ='table_name';

其他操作跟MySQL大体类似。详情可参考拓展资料

1.3 PostgreSQL中创建结果表

所有的DWD层表都需要进行导出,这里以dwd_dim_goods_i表为例,进行演示。 其他建表语句详见 资料/代码/pg建表/postsql_dw_dim.sql

创建数据库:
CREATE DATABASE dw;

通过datagrip切换到public下: 在datagrip中,点击右上方的数据库选项

创建表操作:

建表的时候学会使用快捷键

alt+鼠标左键: 字符多选

alt+鼠标左键 然后 再ctrl+shift+右键→ : 选多个单词

home: 快速到行开头

end: 快速到行结尾

CREATE TABLE IF NOT EXISTS dwd_dim_goods_i(goods_id                INT           ,goods_no                VARCHAR(50)   ,goods_name              VARCHAR(200)  ,first_category_id       INT           ,first_category_no       VARCHAR(50)   ,first_category_name     VARCHAR(50)   ,second_category_id      INT           ,second_category_no      VARCHAR(50)   ,second_category_name    VARCHAR(50)   ,third_category_id       INT           ,third_category_no       VARCHAR(50)   ,third_category_name     VARCHAR(50)   ,brand_no                VARCHAR(50)   ,spec                    VARCHAR(50)   ,sale_unit               VARCHAR(50)   ,life_cycle_status       VARCHAR(50)   ,tax_rate_status         INT           ,tax_rate                VARCHAR(50)   ,tax_value               DECIMAL(27, 3),order_multiple          DECIMAL(27, 2),pack_qty                DECIMAL(27, 3),split_type              VARCHAR(50)   ,is_sell_by_piece        INT           ,is_self_support         INT           ,is_variable_price       INT           ,is_double_measurement   INT           ,is_must_sell            INT           ,is_seasonal             INT           ,seasonal_start_time     VARCHAR(50)   ,seasonal_end_time       VARCHAR(50)   ,is_deleted              INT           ,goods_type              VARCHAR(50)   ,create_time             TIMESTAMP     ,update_time             TIMESTAMP     ,PRIMARY KEY (goods_no)
);
COMMENT on table dwd_dim_goods_i is '商品表';
COMMENT on column dwd_dim_goods_i.goods_id                      is '商品ID';
COMMENT on column dwd_dim_goods_i.goods_no                      is '商品编码';
COMMENT on column dwd_dim_goods_i.goods_name                    is '名称';
COMMENT on column dwd_dim_goods_i.first_category_id             is '一级分类ID';
COMMENT on column dwd_dim_goods_i.first_category_no             is '一级分类编码';
COMMENT on column dwd_dim_goods_i.first_category_name           is '一级分类';
COMMENT on column dwd_dim_goods_i.second_category_id            is '二级分类ID';
COMMENT on column dwd_dim_goods_i.second_category_no            is '二级分类编码';
COMMENT on column dwd_dim_goods_i.second_category_name          is '二级分类';
COMMENT on column dwd_dim_goods_i.third_category_id             is '三级分类ID';
COMMENT on column dwd_dim_goods_i.third_category_no             is '三级分类编码';
COMMENT on column dwd_dim_goods_i.third_category_name           is '三级分类';
COMMENT on column dwd_dim_goods_i.brand_no                      is '品牌编号';
COMMENT on column dwd_dim_goods_i.spec                          is '商品规格';
COMMENT on column dwd_dim_goods_i.sale_unit                     is '销售单位';
COMMENT on column dwd_dim_goods_i.life_cycle_status             is '生命周期状态';
COMMENT on column dwd_dim_goods_i.tax_rate_status               is '税率审核状态 (0:未提交审核 1:待财务审核 2:税率已审核 3:未通过)';
COMMENT on column dwd_dim_goods_i.tax_rate                      is '税率code';
COMMENT on column dwd_dim_goods_i.tax_value                             is '税率';
COMMENT on column dwd_dim_goods_i.order_multiple                        is '订货倍数';
COMMENT on column dwd_dim_goods_i.pack_qty                              is '箱装数量';
COMMENT on column dwd_dim_goods_i.split_type                    is '分割属性';
COMMENT on column dwd_dim_goods_i.is_sell_by_piece              is '是否拆零,0:不拆;1:拆';
COMMENT on column dwd_dim_goods_i.is_self_support               is '是否自营 0:非自营;1:自营';
COMMENT on column dwd_dim_goods_i.is_variable_price             is '分店可变价 0:不可;1:可以';
COMMENT on column dwd_dim_goods_i.is_double_measurement         is '是否双计量商品 0:否;1:是';
COMMENT on column dwd_dim_goods_i.is_must_sell                  is '必卖品  0:非;1:是';
COMMENT on column dwd_dim_goods_i.is_seasonal                   is '季节性商品  0:非;1:是';
COMMENT on column dwd_dim_goods_i.seasonal_start_time           is '季节性开始时间';
COMMENT on column dwd_dim_goods_i.seasonal_end_time             is '季节性结束时间';
COMMENT on column dwd_dim_goods_i.is_deleted                    is '是否删除0:正常;1:删除';
COMMENT on column dwd_dim_goods_i.goods_type                    is '商品类型 1-国产食品 2-进口食品 3-国产非食品 4-进口非食品';
COMMENT on column dwd_dim_goods_i.create_time                      is '该记录创建时间';
COMMENT on column dwd_dim_goods_i.update_time                      is '该记录最后更新时间';

1.4 基于DataX完成数据导出

新建postgresql-dw数据源

构建任务

    hive中以-i结尾的维表是有分区的,每个分区保存一个快照,而postgresql中只保留最新的快照数据。所以构建reader读取hive表时不需要dt字段,导入到postgresql时,默认只导入最新的快照。
另外,为了防止postgresql中的历史数据有脏数据,在导入之前可以先清空数据。所以在构建postgresql writer时,需要加上前置sql:truncate table public.dwd_dim_goods_i。
​
操作如下:注意:在构建reader时,要指定导出的分区,指定的方式是在path中通过传参的方式,${partition}在运行时动态指定。
这个案例中path为:/user/hive/warehouse/dim.db/dwd_dim_goods_i/${partition}
​

依次点击构建、选择模板。

编辑任务:

注意:如果是以-f结尾的维表,因为没有分区,在指定path路径以及在最后指定参数时,都不需要考虑分区。

执行任务:

按照以上步骤配置完dwd层所有维表导出任务的配置。

2. 基于海豚调度完成维度主题上线

2.1 DS的基本介绍

DS是apache旗下的顶级开源项目, 是一款工作流的任务调度的系统, 可以对工作流的定时周期化的调度工作, DS早期来自于国内的易观大数据公司开发, 最终贡献给Apache

2.2 DS的架构

针对DS的架构流程, 要求: 整个过程能够讲的出来

    通过UI进行工作流的配置操作, 配置完成后, 将其提交执行, 此时执行请求会被API服务接收到, 接收到后, 随机选择一台Master来完成任务的处理(DAG, 任务分配, 资源处理)(底层最终是有对应scheduler具体完成)(Master是去中心化的),完成分配后, 将对应执行的任务交给对应worker(从节点)来执行, worker对应有一个logger服务进行日志的记录, 在执行过程中, 通过logger实时查看执行日志, 当执行完成后, 通知Master, Master进行状态变更,同时告警服务实时监控状态, 一旦发现状态出现异常, 会立即根据所匹配的告警方案, 通知给相关的人员

2.3 如何启动DS

cd /export/server/dolphinscheduler/
./bin/start-all.sh

如何访问DS:

访问地址:  http://192.168.88.80:12345/dolphinscheduler/ui/view/login/index.html
​
用户名: admin
密码: dolphinscheduler123

2.4 DS的安全中心

2.4.1 队列和租户

2.4.2 用户管理

2.4.3 告警组

2.4.4 worker分组

一般在安装DS的时候会直接配置好

2.4.5 权限管理

2.5 项目和调度操作[练习]

创建项目

创建工作流

  • 创建目录节点:

  • 创建文件节点:

  • 建立连接:

保存工作流:

上线运行工作流

  • 注意如下配置选项:

配置解释如下:

点击上线工作流

查看工作流状态:

2.6 数据源中心

作用: 用于配置在工作流中需要连接各个数据源信息

比如: 工作流中需要直接连接HIVE,那么我们就可以配置一个HIVE的数据源

连接HIVE的数据源:

2.7 进行部署上线操作

注意: 从业务库 –> ODS层操作, 是由DataX-Web进行周期调度执行处理, 每天凌晨20分开始运行, 此部分我们不需要在DS中配置

本次上线: 需要将从ODS –> DWD –> 数据导出 整个流程需要在DS中进行配置

注意: worker分组, 必须只能选择hadoop01(因为DataX Hive 都在Hadoop01节点上, Hadoop02没有的)

start的shell节点

  • 1- 创建一个 start的shell节点, 表示整个工作流的开始

无分区表

ODS层到DWD层

  • 2- 配置 ODS层 到 DWD层相关SQL语句 (以其中一个表详细记录)

insert overwrite table dim.dwd_dim_date_f
selecttrade_date,year_code,month_code,day_code,quanter_code,quanter_name,week_trade_date,month_trade_date,week_end_date,month_end_date,last_week_trade_date,last_month_trade_date,last_week_end_date,last_month_end_date,year_week_code,week_day_code,day_year_num,month_days,is_weekend,days_after1,days_after2,days_after3,days_after4,days_after5,days_after6,days_after7
from dim.ods_dim_date_f

-- 开启动态分区方案
-- 开启非严格模式
set hive.exec.dynamic.partition.mode=nonstrict;
-- 开启动态分区支持(默认true)
set hive.exec.dynamic.partition=true;
-- 设置各个节点生成动态分区的最大数量: 默认为100个  (一般在生产环境中, 都需要调整更大)
set hive.exec.max.dynamic.partitions.pernode=10000;
-- 设置最大生成动态分区的数量: 默认为1000 (一般在生产环境中, 都需要调整更大)
set hive.exec.max.dynamic.partitions=100000;
-- hive一次性最大能够创建多少个文件: 默认为10w
set hive.exec.max.created.files=150000;
--hive压缩
--开启中间结果压缩
set hive.exec.compress.intermediate=true;
--开启最终结果压缩
set hive.exec.compress.output=true;
--写入时压缩生效
set hive.exec.orc.compression.strategy=COMPRESSION;

连线:

DWD层导出到PG

思路: 在DataX中配置每一个表从dwd到PG的Json文件, 然后通过shell命令执行调度即可

cd /export/server/datax/job/
mkdir -p dim_dwd2pg_job
cd dim_dwd2pg_job/
配置json文件:
vim hive2pg_dwd_dim_date_f.json
输入 i 进入插入模式:对应的Json内容, 可以直接从datax-web中获取对应json内容 (注意: 需要将密码修改回来, 不要使用加密, 因为加密的是datax-web加的, 与datax没关系)

接下来直接在DS中配置使用即可

JOB_DIR="/export/server/datax/job/自己job目录名称/自己json文件名称.json"
hdfs_path="/user/hive/warehouse/dim.db/dwd_dim_date_f"
if hdfs dfs -test -e "$hdfs_path";
thenpython /export/server/datax/bin/datax.py $JOB_DIR
elseecho "路径不存在"
fi

上线运行

尝试上线运行, 查看是否可以导入以及是否可以导出数据

建议: 可以将pg中对应表数据清空表以及HIVE中表数据清空掉

保存上线, 运行

验证: 通过DS的状态以及通过hive表和pg表查看是否成功


有分区表

ODS层到DWD层:

DWD层导出到PG

cd /export/server/datax/job/dim_dwd2pg_job/vim hive2pg_dwd_dim_source_type_map_i.json
输入i进入插入模式添加json配置: 此配置直接从datax-web中获取, 注意更改用户和密码

partition="dt=${inputdate}"
JOB_DIR="/export/server/datax/job/自己job目录名称/自己json文件名称.json"
hdfs_path="/user/hive/warehouse/dim.db/dwd_dim_source_type_map_i/${partition}"
if hdfs dfs -test -e "$hdfs_path";
thenpython /export/server/datax/bin/datax.py -p "-Dpartition=$partition" $JOB_DIR
elseecho "路径不存在"
fi

点击保存, 设置全局参数: inputdate

上线运行

上线, 测试 查看是否可以正常导入:

完整工作流图

DS的定时操作:

设置, 定时的状态是下线状态, 需要将其调整为上线


附录:

hive参数配置

说明: 发现在执行数据导入到各个层次的时候, 需要在执行SQL之前, 添加很多的set的参数, 而且每个表的参数基本是一样的, 此时可以尝试将其配置到HIVE的公共部分

  • 选择Hive,点击配置,搜索hive-site,然后选择hive-site.xml 的 HiveServer2 高级配置代码段(安全阀),然后点击加号,将参数进行一个一个的配置

配置后, 点击保存更改,然后重启相关服务


pg所有脚本

以job目录为: dim_job为例

hive2pg_dwd_dim_date_f
JOB_DIR="/export/server/datax/job/dim_job/dwd_dim_date_f.json"
hdfs_path="/user/hive/warehouse/dim.db/dwd_dim_date_f"
if hdfs dfs -test -e "$hdfs_path";
thenpython /export/server/datax/bin/datax.py $JOB_DIR
elseecho "路径不存在"
fi
hive2pg_dwd_dim_category_statistics_i
partition="dt=${inputdate}"
JOB_DIR="/export/server/datax/job/dim_job/dwd_dim_category_statistics_i.json"
hdfs_path="/user/hive/warehouse/dim.db/dwd_dim_category_statistics_i/${partition}"
if hdfs dfs -test -e "$hdfs_path";
thenpython /export/server/datax/bin/datax.py -p "-Dpartition=$partition" $JOB_DIR
elseecho "路径不存在"
fi
hive2pg_dwd_dim_goods_i
partition="dt=${inputdate}"
JOB_DIR="/export/server/datax/job/dim_job/dwd_dim_goods_i.json"
hdfs_path="/user/hive/warehouse/dim.db/dwd_dim_goods_i/${partition}"
if hdfs dfs -test -e "$hdfs_path";
thenpython /export/server/datax/bin/datax.py -p "-Dpartition=$partition" $JOB_DIR
elseecho "路径不存在"
fi
hive2pg_dwd_dim_store_goods_i
partition="dt=${inputdate}"
JOB_DIR="/export/server/datax/job/dim_job/dwd_dim_store_goods_i.json"
hdfs_path="/user/hive/warehouse/dim.db/dwd_dim_store_goods_i/${partition}"
if hdfs dfs -test -e "$hdfs_path";
thenpython /export/server/datax/bin/datax.py -p "-Dpartition=$partition" $JOB_DIR
elseecho "路径不存在"
fi
hive2pg_dwd_dim_store_clear_goods_i
partition="dt=${inputdate}"
JOB_DIR="/export/server/datax/job/dim_job/dwd_dim_store_clear_goods_i.json"
hdfs_path="/user/hive/warehouse/dim.db/dwd_dim_store_clear_goods_i/${partition}"
if hdfs dfs -test -e "$hdfs_path";
thenpython /export/server/datax/bin/datax.py -p "-Dpartition=$partition" $JOB_DIR
elseecho "路径不存在"
fi
hive2pg_dwd_dim_source_type_map_i
partition="dt=${inputdate}"
JOB_DIR="/export/server/datax/job/dim_job/dwd_dim_source_type_map_i.json"
hdfs_path="/user/hive/warehouse/dim.db/dwd_dim_source_type_map_i/${partition}"
if hdfs dfs -test -e "$hdfs_path";
thenpython /export/server/datax/bin/datax.py -p "-Dpartition=$partition" $JOB_DIR
elseecho "路径不存在"
fi
hive2pg_dwd_dim_store_i
partition="dt=${inputdate}"
JOB_DIR="/export/server/datax/job/dim_job/dwd_dim_store_i.json"
hdfs_path="/user/hive/warehouse/dim.db/dwd_dim_store_i/${partition}"
if hdfs dfs -test -e "$hdfs_path";
thenpython /export/server/datax/bin/datax.py -p "-Dpartition=$partition" $JOB_DIR
elseecho "路径不存在"
fi

http://www.ppmy.cn/news/1238322.html

相关文章

【MATLAB】全网入门快、免费获取、持续更新的科研绘图教程系列2

14 【MATLAB】科研绘图第十四期表示散点分布的双柱状双Y轴统计图 %% 表示散点分布的双柱状双Y轴统计图%% Made by Lwcah (公众号:Lwcah) %% 公众号:Lwcah %% 知乎、B站、小红书、抖音同名账号:Lwcah,感谢关注~ %% 更多…

基于java实现捕鱼达人游戏

开发工具eclipse,jdk1.8 文档截图: package com.qd.fish;import java.awt.Graphics; import java.awt.image.BufferedImage; import java.util.Random;public class Fish {//定义鱼的图片BufferedImage fishImage;//定义鱼的数组帧BufferedImage[] fishFrame;//…

html table样式的设计 表格边框修饰

<!DOCTYPE html> <html> <head> <meta http-equiv"Content-Type" content"text/html; charsetutf-8" /> <title>今日小说排行榜</title> <style> table {border-collapse: collapse;border: 4px double red; /*…

python -opencv 轮廓检测(多边形,外接矩形,外接圆)

python -opencv 轮廓检测(多边形&#xff0c;外接矩形&#xff0c;外接圆) 边缘检测步骤: 第一步&#xff1a;读取图像为灰度图 第二步&#xff1a;进行二值化处理 第三步&#xff1a;使用cv2.findContours对二值化图像提取轮廓 第三步&#xff1a;将轮廓绘制到图中 代码如下…

蓝桥杯每日一题2023.11.23

题目描述 题目分析 本题使用递归模拟即可&#xff0c;将每一个大格子都可以拆分看成几个小格子&#xff0c;先将最开始的数字进行填入&#xff0c;使每一个对应小格子的值都为大格子对应的数&#xff0c;搜索找到符合要求的即可 &#xff08;答案&#xff1a;50 33 30 41&am…

Qt/QML编程学习之心得:一个Qt工程的学习笔记(九)

这里是关于如何使用Qt Widget开发,而Qt Quick/QML的开发是另一种方式。 1、.pro文件 加CONFIG += c++11,才可以使用Lamda表达式(一般用于connect的内嵌槽函数) 2、QWidget 这是Qt新增加的一个类,基类,窗口类,QMainWindow和QDialog都继承与它。 3、Main函数 QApplicati…

Log4j2.xml不生效:WARN StatusLogger Multiple logging implementations found:

背景 将 -Dlog4j.debug 添加到IDEA的类的启动配置中 运行上图代码&#xff0c;这里log4j2.xml控制的日志级别是info&#xff0c;很明显是没生效。 DEBUG StatusLogger org.slf4j.helpers.Log4jLoggerFactory is not on classpath. Good! DEBUG StatusLogger Using Shutdow…

[媒体]js上传视频图片格式对应的原生type判断

视频格式&#xff1a; wmv: video/x-ms-wmvrm: application/vnd.rn-realmediamov: video/quicktimempeg: video/mpegmp4: video/mp43gp: video/3gppflv: video/x-flvavi: video/x-msvideormvb: application/vnd.rn-realmedia-vbrts: video/mp2tasf: video/x-ms-asfmpg: video/…