基于人工大猩猩部队算法优化概率神经网络PNN的分类预测 - 附代码

news/2024/11/25 14:36:02/

基于人工大猩猩部队算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于人工大猩猩部队算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于人工大猩猩部队优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用人工大猩猩部队算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于人工大猩猩部队优化的PNN网络

人工大猩猩部队算法原理请参考:https://blog.csdn.net/u011835903/article/details/123047637

利用人工大猩猩部队算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

人工大猩猩部队参数设置如下:

%% 人工大猩猩部队参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从结果来看,人工大猩猩部队-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码


http://www.ppmy.cn/news/1232143.html

相关文章

mongodb——概念介绍(文档,集合,固定集合,元数据,常用数据类型)

mongodb 层级结构 实例:系统上运行的进程及节点集,一个实例可以有多个库,默认端口 27017。 库:多个集合组成数据库,每个数据库都是独立的,有自己的用户、权限信息,独立的存储文件集 合。 集合&…

音视频学习(十八)——使用ffmepg实现视音频解码

视频解码 初始化 视频常用的编解码器id定义(以h264和h265为例) // 定义在ffmpeg\include\libavcodec\avcodec.h AV_CODEC_ID_H264 AV_CODEC_ID_H265查找解码器:根据编解码id查看解码器 AVCodec* pCodecVideo avcodec_find_decoder(codec…

MongoDB归并连续号段-(待验证)

实现按照不同条件归并连续号段的方式与具体的数据模型和查询需求有关,以下是一种常见的方式: 假设有一个文档集合,包含如下字段: {"_id": ObjectId("613c3050d5d9b45a0de7c290"),"group": "…

LeetCode47-全排列II-剪枝逻辑

参考链接: 🔗:卡尔的代码随想录:全排列II 这里第一层,used只有一个元素为1,代表只取出了1个元素作为排列,第二层used有两个元素为1,代表取出了2个元素作为排列,因为数组有序,所以重复的元素都是挨着的,因此可以使用如下语句去重. 其中visit[i-1]False的话,就是代表…

香港科技大学广州|机器人与自主系统学域博士招生宣讲会—同济大学专场!!!(暨全额奖学金政策)

在机器人和自主系统领域实现全球卓越—机器人与自主系统学域 硬核科研实验室,浓厚创新产学研氛围! 教授亲临现场,面对面答疑解惑助攻申请! 一经录取,享全额奖学金1.5万/月! 🕙时间:…

git撤销某一次commit提交

一:撤销上一次commit提交,但不删除修改的代码 可以使用使用VSCode 二:使用 git reset --hard命令删除提交时,将会删除该提交及其之后的所有更改(相当于你想要回滚到的提交的提交ID) git reset --hard 版本…

Qt ListWidget

先创建QListWidgetItem: QListWidgetItem* pListItem1 new QListWidgetItem(QIcon(":/resources/editor.png"),u8"editor");QListWidgetItem* pListItem2 new QListWidgetItem(QIcon(":/resources/env.png"),u8"env");Q…

注意这“一前一后” 覆盖伦敦金价格形态的缺点

在伦敦金交易中,投资者除了应用技术指标和K线信号做交易以外,还会采取价格形态作为入场触发的信号。但在实际交易中,价格形态的灵敏程度比前面说的那两者要差一点,那我们要如何应用好价格形态作为触发信号呢?下面我们就…