支持向量机(SVM, Support Vector Machines)是一种广泛应用于分类、回归、甚至是异常检测的监督学习算法。自从Vapnik和Chervonenkis在1995年首次提出,SVM算法就在机器学习领域赢得了巨大的声誉。这部分因为其基于几何和统计理论的坚实数学基础,也因为其在实际应用中展示出的出色性能。
代码实现
在这一部分中,我们将使用Python和PyTorch库来实现一个基础的支持向量机(SVM)。我们会遵循以下几个主要步骤:
- 数据预处理:准备用于训练和测试的数据。
- 模型定义:定义SVM模型的架构。
- 优化器选择:选择合适的优化算法。
- 训练模型:使用训练数据来训练模型。
- 评估模型:使用测试数据来评估模型的性能。
import torch# 创建训练数据和标签
X_train = torch.FloatTensor([[1, 1], [1, 2], [1, 3], [2, 1], [2, 2], [2, 3]])
y_train = torch.FloatTensor([1, 1, 1, -1, -1, -1])# 创建测试数据
X_test = torch.FloatTensor([[1, 0.5], [2, 0.5]])
模型定义
class LinearSVM(torch.nn.Module):def __init__(self):super(LinearSVM, self).__init__()self.weight = torch.nn.Parameter(torch.rand(2), requires_grad=True)self.bias = torch.nn.Parameter(torch.rand(1), requires_grad=True)def forward(self, x):return torch.matmul(x, self.weight) + self.bias
优化器选择
# 实例化模型和优化器
model = LinearSVM()
optimizer = torch.optim.SGD([model.weight, model.bias], lr=0.01)
训练模型
# 设置训练轮次和正则化参数C
epochs = 100
C = 0.1for epoch in range(epochs):for i, x in enumerate(X_train):y = y_train[i]optimizer.zero_grad()# 计算间隔损失 hinge loss: max(0, 1 - y*(wx + b))loss = torch.max(torch.tensor(0), 1 - y * model(x))# 添加正则化项: C * ||w||^2loss += C * torch.norm(model.weight)**2loss.backward()optimizer.step()
评估模型
with torch.no_grad():for x in X_test:prediction = model(x)print(f"Prediction for {x} is: {prediction}")