消息消费过程

news/2025/2/2 3:37:29/

前言

本文介绍下Kafka消费过程, 内容涉及消费与消费组, 主题与分区, 位移提交,分区再平衡和消费者拦截器等内容。

消费者与消费组

Kafka将消费者组织为消费组, 消息只会被投递给消费组中的1个消费者。因此, 从不同消费组中的消费者来看, Kafka是多播(Pub/Sub)模式。从同一个消费组中的消费者来看, Kafka是单播(P2P)模式。

开发流程

  1. 配置consumer参数并创建consumer实例;
  2. 订阅主题;
  3. 拉取消息并消费;
  4. 提交消费偏移量;
  5. 关闭consumer;
class ConsumerTest {public static void main(String[] args) {Properties props = new Properties();// bootstrap serverprops.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "");// group.id, 如果当前consumer需要加入到某个group中, 否则自成一个groupprops.setProperty(ConsumerConfig.GROUP_ID_CONFIG, "");// 自动创建topic, 开发中可能consumer端的小伙伴先开始, 等不及生产端。props.setProperty(ConsumerConfig.ALLOW_AUTO_CREATE_TOPICS_CONFIG, "");// 自动提交offset设置, 样例中为手动提交// props.setProperty(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "");// 自动提交offset的时间间隔// props.setProperty(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "");// offset reset配置props.setProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "");// key和value的deserializer配置props.setProperty(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "");props.setProperty(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "");KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);boolean running = true;while(running) {ConsumerRecords<String,String> records = consumer.poll(Duration.ofMillis(1000));for(ConsumerRecord<String,String> record : records) {// 消费消息}// 消费成功提交offsetconsumer.commitSync();}consumer.close();}
}

主题与分区

每个Topic中的消息由若干个分区存储, 每个分区存储了整个Topic下消息的一部分。在消息消费阶段, 同一个partition会被分配给消费组中的某一个consumer。因此partion的数量决定了一个consumer group中consumer的上限。

例如, Topic test 有 3 个partition, 对应的consumer group test-group中有4个consumer(consumer-1, consumer-2, consumer-3, consumer-4), 那么其中的某个consumer会处于空闲状态, 因为没有partition可以被分配, 进而也就无消息可消费。

反序列化

consumer作为消息的消费方, 必须使用与producer serializer相兼容的deserializer, 这样才能正确解析出对应的消息, 进而做消息消费。可以配置消息的key和message的deserialzer。Kafka内置了基本数据类型的Deserializer, IntegerDeserializer。

interface Deserializer {T deserialize(String topic, byte[] data);void close();
}

主题订阅

  1. 订阅通过subscribe方法完成。如果订阅方法反复调用, 仅最后一次的调用生效。
  2. 订阅多个特定主题, subscribe(collection);
  3. 订阅某种模式的主题, subscribe(pattern);
  4. 订阅某个主题的特定partition, assign(partition);
  5. 无论是哪种订阅方式, 一个consumer只能使用其中的一种, 都可以通过unsubscribe来取消订阅;

消息获取

  1. 消息消费的前提是topic中的消息投递给consumer。总体来说消息投递有2种模式, 推模式和拉模式。
  2. 推模式: client建立到server的长链接, 当server中有消息产生时, 第一时间通过该长链接推送到client;
  3. 拉模式: client主动发起消息请求, 从server端拉取消息;
  4. 从代码来看, Kafka是拉模式。由于consumer无法预知, topic中是否有新消息, 因此无效请求是存在的。Kafka设计者也注意到了这点, 提供了如下方法, 加入了一个等待窗口。如果窗口内有新消息到达, 则立刻返回; 如果始终无消息到达, 则超时后返回。平衡消息消费的及时性, 无效请求数量, 和server端实现复杂性。
kafkaConsumer.poll(timeout, timeunit)

内部涉及消费者位移, 消费者协调器, 组协调器, 消费者选择具, 分区分配的分发和再分配, 消费者心跳等内容。

位移提交

位移是消息在存储中的位置说明。通常来说, 消费者继续消费尚未消费的消息。消息存储和消费的逻辑模型如下:
请添加图片描述

  1. 消息是按照partition存储的;
  2. 消息写入partition时, offset单调递增;
  3. 从partition消费时, 每个消费者维护自己的offset; 消费中断后恢复时, 从上次保存的offset位置开始继续消费;

因此消息是否已经被消费由offset决定, offset及其之前的消息是已消费的消息, offset之后是待消费消息。因此, 消费者完成某个分区的消费之后, 需要提交该offset给Kafka Server。提交方式有两种自动提交和手动提交;

提交方式说明优缺点
自动提交(默认方式) Kafka Client周期性地提交偏移量优点是简单, 确定是重复消费和丢失风险
手动提交由用户主动提交偏移量优点是可细粒度管理, 缺点是相对复杂

自动提交

自动提交是按照时间间隔提交, 如果在消息拉取和位移提交之间client崩溃, 对下一次消费的影响分三种场景讨论(如下图所示)。
在这里插入图片描述

  1. consumer thread中poll和消费是串行的, 但consumer thread和commit thread是并行的;
  2. 在poll和crash之间发生commit, 那么当client恢复后从x+7开始拉取消息, [x+3, x+6] 的消息丢失;
  3. 在crash之后发生commit, 那么当client恢复后从x+7开始拉取消息, [x+3, x+6] 的消息丢失;
  4. 全程没有发生commit, 那么当client恢复后从x+1开始拉取消息, [x+1, x+3]的消息重复消费;

手动提交

也有两种模式, 同步提交和异步提交。前者在得到server确认之前所在线程会阻塞, 后者线程继续运行。是需要结合场景来选择。
| 提交方式 | 说明 | 优缺点 |
| 同步提交 | 针对当前拉取的一批消息, 统一提交 | 简单, 无法做细粒度控制 |
| 异步提交 | 基于回调通知结果 | 可以按分区提交, 指定offset参数提交 |

指定offset

消费消息需要从某个offset开始, 如果是首次消费又该从哪个位置开始呢?

  1. 由参数auto.offset.reset设定默认行为
    | 参数值 | 行为 |
    |----|----|
    | earliest | 从分区第一条消息的offset开始 |
    | latest | 从上次保存的offset开始, 首次消费时和earliest行为一致 |
    | none | 程序逻辑自定义, 如果未设置则抛出异常 |

  2. 程序通过seek方法指定offset位置, 如果指定offset越界也会触发auto.offset.reset行为; 由于offset是partition级别的概念, 因此seek的使用是面向partition, 这就意味着对同一个topic的多个partition来说, 可以seek不同的offset。此外seek方法也支持基于timestamp定位消息。站在更高的视角来看, seek提供了parttion级别的消息搜索能力。

  3. 由于seek的存在, 我们可以把offset存储在DB或者其他Kafka之外的地方, 并基于seek进行恢复。

再平衡

再平衡是把分区所有权从1个消费者转移到另一个消费者的行为, 它保障消费组的可用性和伸缩性。从可用性而言, 消费故障可以恢复。就伸缩性而言, 消费组内的消费者可以扩缩容。再平衡期间, 所有的消费者暂停消费, 直到再平衡结束。由于再平衡期间, 消费者的消费状态会丢失, 再平衡之后每个partition的offset以Kafka已持久保存的offset为准, 因此可能存在重复消费情况。

Kafka提供ConsumerRebalanceListener接口, 使得该过程可以被Consumer感知, 至于怎么处理则是应用需要解决的问题, Kafka也只能帮我们到这里。

消费者拦截器

Kafka提供了ConsumerInterceptor接口, 允许我们在poll方法返回前和commit方法调用后触发, 允许我们做一些定制化的工作, 比如消息过滤, 日志输出, 消息追踪等操作。从网络应用开发的角度来说, 这种是一种常见的实现方式, 比如Tomcat中的Filter。

拦截器通过interceptor.classes配置生效, 多个拦截器可以组合成为"拦截器Pipeline"。如果其中一个拦截器异常, 后续的拦截器从最近一次成功的拦截器继续执行, 因此需要提防副作用。


http://www.ppmy.cn/news/1226939.html

相关文章

springboot+activiti5.22.0集成Activiti在线流程设计器

SpringBoot集成Activiti5.22在线流程设计器 文章目录 SpringBoot集成Activiti5.22在线流程设计器&#x1f4dd;1.增加配置pom依赖 增加数据库及redis配置文件&#x1f4dc; 2.启动类ActivitiDesignApplication排除安全校验注解启动项目后将会自动在数据库中生成表 &#x1f4d8…

Rust7.2 More About Cargo and Crates.io

Rust学习笔记 Rust编程语言入门教程课程笔记 参考教材: The Rust Programming Language (by Steve Klabnik and Carol Nichols, with contributions from the Rust Community) Lecture 14: More About Cargo and Crates.io main.rs //Customizing Builds with Release Pro…

用5000字讲清楚压敏电阻

大家好,这里是大话硬件。 今天这篇文章用5000字的篇幅讲清楚压敏电阻。 1. 压敏电阻 压敏电阻,英文名Voltage Dependent Resistor,缩写VDR,或者叫Varistor,Variable(会变的)+ Resistor(电阻)。它的伏安特性曲线具有非线性。也就是压敏电阻的阻值并不是固定的,存在…

数据库mysql详细教学

目录 mysql的第一组基本操作&#xff1a;数据库操作 1、查看当前数据库 2、创建数据库 3、选中数据库 4、删除数据库 5、表操作 5.1查看数据库中的表 ​编辑 5.2创建表 5.2.1数据类型 5.3 查看指定表的表结构 5.4删除表 5.5 MySQL表的增删改查 5.5.1新增 / 插入数据…

Flutter 3.16 中带来的更新

Flutter 3.16 中带来的更新 目 录 1. 概述2. 框架更新2.1 Material 3 成为新默认2.2 支持 Material 3 动画2.3 TextScaler2.4 SelectionArea 更新2.5 MatrixTransition 动画2.6 滚动更新2.7 在编辑菜单中添加附加选项2.8 PaintPattern 添加到 flutter_test 3. 引擎更新&#xf…

二叉树最近公共祖先

题目顺序 01 236. 二叉树的最近公共祖先 02 235. 二叉搜索树的最近公共祖先 1644. 二叉树的最近公共祖先 II 1650. 二叉树的最近公共祖先 III 1676. 二叉树的最近公共祖先 IV&#x1f512;

Docker在Centos7下的安装

1、卸载旧版本 执行如下指令对旧版本进行卸载&#xff1a; sudo yum remove docker \docker-client \docker-client-latest \docker-common \docker-latest \docker-latest-logrotate \docker-logrotate \docker-engine 执行完毕后&#xff0c;如果输入docker version发现do…

基于枚举实现的桥接模式

基于枚举实现的桥接模式 这里是基于枚举方式来维护的桥接模式&#xff0c;维护抽象化和实现化的关系。 桥接模式的应用场景&#xff1a; 当一个类内部具备两种或多种变化维度时&#xff0c;使用桥接模式可以解耦这些变化的维度&#xff0c;使高层代码架构稳定。 桥接模式通常…