gRPC 四模式之 一元RPC模式

news/2024/10/27 19:19:01/

一元RPC模式

一元 RPC 模式也被称为简单 RPC 模式。在该模式中,当客户端调用服务器端的远程方法时,客户端发送请求至服务器端并获得一个响应,与响应一起发送的还有状态细节以及 trailer 元数据(这部分不是默认发送的,需要自己实现)

![[Pasted image 20231115104223.png]]

使用场景

单次通讯,传输数据包的时候,返回收到应答。

在一元RPC模式中,状态细节和trailer元数据并不是默认就有的,它们是由服务器端根据需要添加的。状态细节通常包含了关于RPC调用的状态信息,例如是否成功,如果失败了具体是什么原因等。而trailer元数据则是一些额外的信息,例如调用的时间,服务器的处理时间等。

具体来说,状态细节和trailer元数据的形式取决于你使用的RPC框架和编程语言。在gRPC中,状态细节和trailer元数据通常以键值对的形式存在,键和值都是字符串。例如,你可能会看到这样的状态细节:{"status": "success"},或者这样的trailer元数据:{"processing-time": "123ms"}

请注意,这只是一个例子,实际的状态细节和trailer元数据会根据你的应用需求和服务器的实现来定。

在gRPC中,服务器可以通过grpc::ServerContext对象来设置trailer元数据。这些元数据在RPC调用结束时发送给客户端。以下是一个C++的示例,展示了如何设置和发送trailer元数据:

#include <grpcpp/grpcpp.h>
#include "your_service.grpc.pb.h"  // 替换为你的服务的protobuf头文件class YourServiceImpl final : public YourService::Service {grpc::Status YourMethod(grpc::ServerContext* context, const YourRequest* request,YourResponse* reply) override {// 处理你的方法逻辑...// 在RPC调用结束时,设置trailer元数据context->AddTrailingMetadata("processing-time", "123ms");return grpc::Status::OK;}
};

在这个例子中,服务器在处理完YourMethod方法后,通过AddTrailingMetadata方法添加了一个名为"processing-time"的trailer元数据,值为"123ms"。这个元数据会在RPC调用结束时发送给客户端。

至于状态细节,它通常包含在返回的grpc::Status对象中。例如,如果你的方法出现了错误,你可以返回一个包含错误信息的grpc::Status对象:

return grpc::Status(grpc::StatusCode::INTERNAL, "An internal error occurred");

在这个例子中,服务器返回了一个状态码为INTERNALgrpc::Status对象,状态细节为"An internal error occurred"。这个状态细节会被发送给客户端,客户端可以通过检查返回的grpc::Status对象来获取这个信息。

在服务端返回时,设置多个状态和元数据

在gRPC中,你可以通过多次调用AddTrailingMetadata方法来添加多个trailer元数据。每次调用都会添加一个新的键值对。例如:

context->AddTrailingMetadata("processing-time", "123ms");
context->AddTrailingMetadata("server-id", "server-001");
context->AddTrailingMetadata("timestamp", "2022-01-01T00:00:00Z");

在这个例子中,服务器添加了三个trailer元数据:“processing-time”,“server-id"和"timestamp”。

至于状态细节,gRPC的grpc::Status对象只支持设置一个状态细节。如果你需要传递多个状态信息,你可以将它们编码为一个字符串,例如JSON格式的字符串,然后设置为状态细节。例如:

std::string status_detail = R"({"error": "An internal error occurred","error_code": 123,"error_info": "Some additional info"
})";
return grpc::Status(grpc::StatusCode::INTERNAL, status_detail);

在这个例子中,服务器将多个状态信息编码为一个JSON格式的字符串,然后设置为状态细节。客户端可以解析这个字符串来获取这些状态信息。

客户端接取trailer元数据

客户端可以接收到服务端发送的trailer元数据和状态细节,并根据需要进行处理。

在gRPC中,客户端可以通过grpc::ClientContext对象来获取trailer元数据。例如:

grpc::ClientContext context;
YourResponse response;
grpc::Status status = stub->YourMethod(&context, request, &response);if (!status.ok()) {std::cout << "RPC failed with code " << status.error_code()<< ", message: " << status.error_message() << std::endl;// 获取trailer元数据auto trailers = context.GetServerTrailingMetadata();for (const auto& kv : trailers) {std::cout << "Trailer key: " << kv.first << ", value: " << kv.second << std::endl;}
}

在这个例子中,客户端首先调用YourMethod方法并获取返回的grpc::Status对象。如果RPC调用失败,客户端会打印出错误信息,然后通过GetServerTrailingMetadata方法获取trailer元数据并打印出来。

至于状态细节,客户端可以通过grpc::Status对象的error_message方法来获取。例如:

std::cout << "Status detail: " << status.error_message() << std::endl;

在这个例子中,客户端打印出了状态细节。如果状态细节是一个编码的字符串,例如JSON格式的字符串,客户端可以解析这个字符串来获取状态信息。

客户端发送 header 元数据、状态细节

在gRPC中,客户端也可以设置和发送header元数据和状态细节。这可以通过grpc::ClientContext对象来实现。

首先,客户端可以通过AddMetadata方法来设置header元数据:

grpc::ClientContext context;
context.AddMetadata("client-id", "client-001");
context.AddMetadata("timestamp", "2022-01-01T00:00:00Z");

在这个例子中,客户端设置了两个header元数据:“client-id"和"timestamp”。

然后,客户端可以通过TryCancel方法来取消RPC调用,并通过set_cancel_message方法来设置状态细节:

context.TryCancel();
context.set_cancel_message("The request was cancelled by the client");

在这个例子中,客户端取消了RPC调用,并设置了状态细节为"The request was cancelled by the client"。

请注意,这只是一个例子,实际的使用方式会根据你的应用需求和gRPC的API来定。在gRPC中,客户端也可以设置和发送header元数据和状态细节。这可以通过grpc::ClientContext对象来实现。

首先,客户端可以通过AddMetadata方法来设置header元数据:

grpc::ClientContext context;
context.AddMetadata("client-id", "client-001");
context.AddMetadata("timestamp", "2022-01-01T00:00:00Z");

在这个例子中,客户端设置了两个header元数据:“client-id"和"timestamp”。

然后,客户端可以通过TryCancel方法来取消RPC调用,并通过set_cancel_message方法来设置状态细节:

context.TryCancel();
context.set_cancel_message("The request was cancelled by the client");

在这个例子中,客户端取消了RPC调用,并设置了状态细节为"The request was cancelled by the client"。

补充:

取消RPC调用通常是因为客户端不再需要RPC的结果,或者因为某些条件已经改变,使得继续等待响应变得没有意义。取消可以用于各种情况,例如:

  1. 超时: 如果一个RPC调用超过了预定的时间还没有响应,客户端可能会选择取消它,以避免无限期地等待。

  2. 用户干预: 如果用户发起了一个操作,然后在操作完成前改变了主意,客户端应用可能需要取消相关的RPC调用。

  3. 资源优化: 如果客户端已经发送了多个RPC调用,但是得到了足够的信息来完成任务,它可能会取消剩余的调用,以节省服务器资源和网络带宽。

  4. 错误恢复: 如果在RPC调用过程中发生了错误,客户端可能会取消该调用,并尝试其他恢复策略。

  5. 依赖关系变化: 如果RPC调用的结果依赖于某些条件,而这些条件在调用过程中发生了变化,客户端可能需要取消调用。

取消RPC调用是异步编程中常见的一种模式,它允许应用程序更有效地管理资源和用户交互。在gRPC中,客户端可以通过调用grpc::ClientContextTryCancel方法来取消RPC调用。服务端可以通过检查grpc::ServerContext::IsCancelled来响应取消事件,并及时停止处理。


分享一个有趣的 学习链接:https://xxetb.xet.tech/s/HY8za


http://www.ppmy.cn/news/1225908.html

相关文章

【LeetCode】挑战100天 Day11(热题+面试经典150题)

【LeetCode】挑战100天 Day11&#xff08;热题面试经典150题&#xff09; 一、LeetCode介绍二、LeetCode 热题 HOT 100-132.1 题目2.2 题解 三、面试经典 150 题-133.1 题目3.2 题解 一、LeetCode介绍 LeetCode是一个在线编程网站&#xff0c;提供各种算法和数据结构的题目&…

python变量名解析总结

1 python变量名解析总结 点号和无点号变量名&#xff0c;用不同的处理方式。 &#xff08;1&#xff09; 无点号的变量名&#xff0c;比如X&#xff0c;使用的是作用域。 &#xff08;2&#xff09; 有点号的变量名&#xff0c;比如obj.X&#xff0c;使用对象的命名空间。 …

gRPC之SAN证书生成

1、SAN证书生成 SAN(Subject Alternative Name)是 SSL 标准 x509 中定义的一个扩展。使用了 SAN 字段的 SSL 证书&#xff0c;可以扩 展此证书支持的域名&#xff0c;使得一个证书可以支持多个不同域名的解析。接下来我们重新利用配置文件生成CA证书&#xff0c; 再利用ca相…

2.2 调用星火大模型的API

调用星火大模型的API 1 申请API调用权限&#xff1a;2 调用原生星火 API3 统一API调用方式 项目仓库地址&#xff1a;https://github.com/datawhalechina/llm-universe 讯飞星火认知大模型&#xff0c;由科大讯飞于2023年5月推出的中文大模型&#xff0c;也是国内大模型的代表…

【JavaSE】基础笔记 - 图书管理系统(保姆教程,含源码)

目录 1、图书管理系统介绍 2、大致框架 3、代码实现步骤 3.1、Book图书类 3.2、BookList书架类 3.3、User用户类、AdminUser类、NormalUser类 3.4、IOperation操作接口 3.5、继承IOperation接口的操作类 3.6、完善User类 3.7、Mian类 4、完整代码 Java的三大特性是…

多模态大一统:开启全模态LLM和通用AI时代的大门

多模态大一统:开启全模态LLM和通用AI时代的大门 1. 目前多模态实现的方法1.1 单独训练各领域模型1.2 多任务学习1.3 集成多模态模型1.4 通用多模态模型2. 多模态统一难点2.1 数据集对齐和融合2.2 大规模计算资源需求2.3 各领域特性的兼容性2.4 可解释性和泛化能力3. 全模态的好…

基于卷积神经网络的猫种类的识别

1.介绍 图像分类是计算机视觉中的一个关键任务&#xff0c;而猫种类识别作为一个有趣且实用的应用场景&#xff0c;通过卷积神经网络&#xff08;CNN&#xff09;的模型能够识别猫的不同品种。在这篇博客中&#xff0c;将详细介绍如何利用深度学习技术构建模型&#xff0c;从而…

Pytorch torch.dot、torch.mv、torch.mm、torch.norm的用法详解

torch.dot的用法&#xff1a; 使用numpy求点积&#xff0c;对于二维的且一个二维的维数为1 torch.mv的用法&#xff1a; torch.mm的用法 torch.norm 名词解释&#xff1a;L2范数也就是向量的模&#xff0c;L1范数就是各个元素的绝对值之和例如&#xff1a;