多维时序 | MATLAB实现PSO-LSTM-Attention粒子群优化长短期记忆神经网络融合注意力机制的多变量时间序列预测

news/2025/2/19 8:06:09/

多维时序 | MATLAB实现PSO-LSTM-Attention粒子群优化长短期记忆神经网络融合注意力机制的多变量时间序列预测

目录

    • 多维时序 | MATLAB实现PSO-LSTM-Attention粒子群优化长短期记忆神经网络融合注意力机制的多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

4

6
7
8
9

基本介绍

多维时序 | MATLAB实现PSO-LSTM-Attention粒子群优化长短期记忆神经网络融合注意力机制的多变量时间序列预测

模型描述

MATLAB实现PSO-LSTM-Attention粒子群优化长短期记忆神经网络融合注意力机制的多变量时间序列预测,用于处理时间序列数据;适用平台:Matlab 2023及以上
1.data为数据集,格式为excel,4个输入特征,1个输出特征,考虑历史特征的影响,多变量时间序列预测;
2.主程序文件,运行即可;
3.命令窗口输出R2、MAE、MAPE、MSE和MBE,可在下载区获取数据和程序内容;
注意程序和数据放在一个文件夹,运行环境为Matlab2023b及以上。

程序设计

  • 完整程序和数据获取方式1:同等价值程序兑换;
  • 完整程序和数据获取方式2:私信博主回复MATLAB实现PSO-LSTM-Attention粒子群优化长短期记忆神经网络融合注意力机制的多变量时间序列预测获取。

%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度
%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/130471154

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501


http://www.ppmy.cn/news/1225169.html

相关文章

STM32/N32G455国民科技芯片驱动DS1302时钟---笔记

这次来分享一下DS1302时钟IC,之前听说过这个IC,但是一直没搞过,用了半天时间就明白了原理和驱动,说明还是很简单的。 注:首先来区分一下DS1302和RTC时钟有什么不同,为什么不直接用RTC呢? RTC不…

【Linux系统编程十九】:(进程通信)--匿名管道/模拟实现进程池

【Linux系统编程十九】:匿名管道原理/模拟实现进程池 一.进程通信理解二.通信实现原理三.系统接口四.五大特性与四种情况五.应用场景--进程池 一.进程通信理解 什么是通信? 通信其实就是一个进程想把数据给另一个进程,但因为进程具有独立性…

Python---函数的作用,定义,使用步骤(调用步骤)

Python实际开发中,使用函数的目的只有一个 “让我们的代码可以被重复使用” 函数的作用有两个: ① 模块化编程 ② 代码重用 在编程领域,编程可以分为两大类:① 模块化编程 ② 面向对象编程 函数就是一个 被命名的、独立的…

【SA8295P 源码分析】129 - GMSL2 协议分析 之 Video Frame 帧数据结构分析 PCLK 计算公式

【SA8295P 源码分析】129 - GMSL2 协议分析 之 Video Frame 帧数据结构分析 & PCLK 计算公式 一、GMSL2 Video Frame 数据分析1.1 视频帧数据结构组成1.2 PCLK 计算公式系列文章汇总见:《【SA8295P 源码分析】00 - 系列文章链接汇总》 本文链接:《【SA8295P 源码分析】12…

【Linux】常用系统工作命令

一、Linux文档目录结构 在Linux系统中,目录、字符设备、套接字、硬盘、光驱、打印机等都被抽象成文件形式,“Linux系统中一切都是文件”。Linux系统中的一切文件都是从"根"目录(/)开始的,并按照文件系统层次…

294_C++_报警状态bit与()上通道bit,然后检测置位的通道,得到对应置位通道的告警信息,适用于多通道告警,组成string字符串发送

1、全部大致解析: //第一层结构体 struct alarminfo_t {unsigned int alarmid;INTF_ALARM_INFO_S pAlarm; };//第二层结构体 typedef struct{INTF_ALARM_TYPE_E AlarmType;DateTime AlarmTime;union{INTF_GENERAL_ALARM_S GeneralAlarm

6. Spring源码篇之FactoryBean

简介 在介绍实例化非懒加载的单例Bean之前,先了解一下FactoryBean 这是spring提供的一个非常重要的功能,是一个小型的工厂,可以灵活的创建出需要的Bean,在很多框架与spring整合的过程中都会用到,例如Mybatis-plus&am…

[C/C++]数据结构 链表(单向链表,双向链表)

前言: 上一文中我们介绍了顺序表的特点及实现,但是顺序表由于每次扩容都是呈二倍增长(扩容大小是自己定义的),可能会造成空间的大量浪费,但是链表却可以解决这个问题. 概念及结构: 链表是一种物理存储结构上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接…