Pytorch D2L Subplots方法对画图、图片处理

news/2024/12/22 0:48:42/

问题代码

def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5): #@save
"""绘制图像列表"""
figsize = (num_cols * scale, num_rows * scale)
_, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
axes = axes.flatten()
for i, (ax, img) in enumerate(zip(axes, imgs)):
if torch.is_tensor(img):
# 图片张量
ax.imshow(img.numpy())
else:
# PIL图片
ax.imshow(img)
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
if titles:
ax.set_title(titles[i])
return axes

d2l.plt.subplots返回值

plt.subplots是matplotlib库中的一个函数,用于创建一个新的Figure对象,并在其中创建一个或多个子图(subplot)。
它的基本用法是:

fig, ax = plt.subplots(nrows=1, ncols=1, **kwargs)
其中,nrowsncols分别指定了子图的行数和列数。如果只想创建一个子图,可以省略其中一个参数。

返回值fig是Figure对象ax则是一个或多个子图的Axes对象(如果只创建了一个子图,则返回一个单独的Axes对象;如果创建了多个子图,则返回一个Axes对象列表)。

kwargs是可选的关键字参数,用于设置Figure和子图的属性。例如,可以使用figsize参数设置Figure的大小,使用sharexsharey参数来共享子图的x轴和y轴。

axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)

解释:

d2l.plt.subplots创建了一个包含多个子图的网格(grid);

num_rows和num_cols分别指定了网格中子图的行数和列数;
figsize指定了整个图像的尺寸,即包含所有子图的画布大小。
返回值axes是一个由网格的子图对象组成的NumPy数组。
我们可以使用它来访问、控制和绘制每个子图。

举例说明:

axes是一个由子图对象组成的NumPy数组,它可以用来访问、控制和绘制每个子图。具体来说,axes是一个大小为(num_rows, num_cols)的NumPy数组,其中axes[i, j]表示第 i + 1 i+1 i+1行和第 j + 1 j+1 j+1列的子图对象。

例如,如果我们使用以下代码创建一个包含 2 2 2行 3 3 3列子图的网格:


import matplotlib.pyplot as pltimport d2lfigsize = (6, 4)num_rows, num_cols = 2, 3axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)那么`axes`将是一个大小为$(2, 3)$的NumPy数组,可以通过索引来访问每个子图对象。例如,我们可以在第$1$行第$2$列的子图中绘制一条直线:axes[0, 1].plot([0, 1], [0, 1])

或者我们可以在所有子图中添加一个标题:


for i in range(num_rows):for j in range(num_cols):axes[i, j].set_title(f'Subplot ({i+1}, {j+1})')

原链接

subplot()、subplots()

subplot()、subplots()在实际过程中,先创建了一个figure画窗,然后通过调用add_subplot()来向画窗中各个分块添加坐标区,其差别在于是分次添加(subplot())还是一次性添加(subplots())

在这里插入图片描述
3.plt.subplots()
语法格式:

matplotlib.pyplot.subplots(nrows=1, ncols=1, *, sharex=False,
sharey=False, squeeze=True,subplot_kw=None, gridspec_kw=None, **fig_kw)
-nrows:默认为 1,设置图表的行数。
-ncols:默认为 1,设置图表的列数。
-sharex、sharey:设置 x、y 轴是否共享属性,默认为 false,可设置为 ‘none’、‘all’、‘row’ 或 ‘col’。 False 或 none 每个子图的 x 轴或 y 轴都是独立的,True 或 ‘all’:所有子图共享 x 轴或 y 轴,‘row’ 设置每个子图行共享一个 x 轴或 y 轴,‘col’:设置每个子图列共享一个 x 轴或 y 轴。

import matplotlib.pyplot as plt
import numpy as np# 创建一些测试数据 
x = np.linspace(0,100, 4)
y = np.sin(x**2)# 创建一个画像和子图 -- 图1
fig, ax = plt.subplots()
ax.plot(x, y)
ax.set_title('Simple plot')# 创建两个子图 -- 图2
#如图figure2,四个子图中上两幅图并无x轴(与下子图共享),因为已设置sharex=True
#若改为sharey=True,可观察到四副子图中右两幅无y轴(即与左子图共享)
f, ([ax1, ax2],[ax3,ax4]) = plt.subplots(2, 2, sharex=True)
ax1.plot(x, y)
ax1.set_title('Sharing x axis')
ax2.scatter(x, y)
ax3.scatter(x, y)
ax4.scatter(x, y)# 创建四个子图 -- 图3
#通过对subplot_kw传入参数,生成关于极坐标系的子图
fig, axs = plt.subplots(2, 2, subplot_kw=dict(projection="polar"))
axs[0, 0].plot(x, y)
axs[1, 1].scatter(x, y)plt.show()

在这里插入图片描述

文章来源地址

python内置函数:zip()函数搭配enumerate函数使用,用在for循环中

简介enumerate()

enumerate()函数是Python的内置函数,对于一个可迭代的(iterable)/可遍历的对象(如列表、字符串),可以利用enumerate函数同时获取对象的索引和值。

x=np.arange(0,100,10)
for i in enumerate(x):index = i[0]; xval = i[1]print(index,xval)
0 0
1 10
2 20
3 30
4 40
5 50
6 60
7 70
8 80
9 90
简介zip()

zip函数是Python的内置函数,它用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的对象(即对多个序列进行并行迭代)。如果各个迭代器元素个数不一致,zip()函数则在最短序列“用完”时就会停止。

sz = np.arange(1,100,10)
sx = np.arange(1,10,1)
for index, (szi, sxi) in enumerate(zip(sz, sx)):print(index,szi,sxi)
0 1 1
1 11 2
2 21 3
3 31 4
4 41 5
5 51 6
6 61 7
7 71 8
8 81 9

transforms.Compose(trans)

Compose()类会将transforms列表里面的transform操作进行遍历。实现的代码很简单:

## 这里对源码进行了部分截取。
def __call__(self, img):for t in self.transforms:	img = t(img)return img

pytorch通过深度学习进行预处理图片,离不开transforms.Compose(),torchvision.datasets.ImageFolder(),torch.utils.data.DataLoader()的用法。

源自于文章

1.Transform.Compose()详解

导入相应的库


import torch
import torchvision
import matplotlib.pyplot as plt
from torch.utils import data
from torchvision import datasets,transforms
from PIL import Image
%matplotlib inline

在这里插入图片描述

class torchvision.transforms.Compose(transforms):# Composes several transforms together.# Parameters: transforms (list of Transform objects) – list of transforms to compose.Example # 可以看出Compose里面的参数实际上就是个列表,而这个列表里面的元素就是你想要执行的transform操作。
>>> transforms.Compose([
>>>     transforms.CenterCrop(10),
>>>     transforms.ToTensor(),])

展示原始图片

pic = "./train/Chihuahua/n02085620_10074.jpg"img = plt.imread(pic)
plt.imshow(img)

定义图片预处理的对象。

traintransform = transforms.Compose([transforms.RandomRotation(20),           # 随机旋转20°transforms.ColorJitter(brightness=0.1), #随机改变图像的亮度对比度和饱和度transforms.Resize([150,150]),          # 转换为需要的尺寸transforms.ToTensor(),                #convert a PIL image to tensor (H*W*C)])
img1 = Image.fromarray(img)   #将numpy对象的img转换为PIL格式
img2 = traintransform(img1)# 图像预处理tensor
img3 = transforms.ToPILImage()(img2)#转换为PIL进行展示
plt.imshow(img3)

展示处理之后的图片,可以看出,图片旋转了20°,并且大小转换为(150,150)

附上——transforms中的函数如何使用?

# Resize:把给定的图片resize到given size
# Normalize:Normalized an tensor image with mean and standard deviation
# ToTensor:convert a PIL image to tensor (H*W*C) in range [0,255] to a torch.Tensor(C*H*W) in the range [0.0,1.0]
# ToPILImage: convert a tensor to PIL image
# Scale:目前已经不用了,推荐用Resize
# CenterCrop:在图片的中间区域进行裁剪
# RandomCrop:在一个随机的位置进行裁剪
# RandomHorizontalFlip:以0.5的概率水平翻转给定的PIL图像
# RandomVerticalFlip:以0.5的概率竖直翻转给定的PIL图像
# RandomResizedCrop:将PIL图像裁剪成任意大小和纵横比
# Grayscale:将图像转换为灰度图像
# RandomGrayscale:将图像以一定的概率转换为灰度图像
# FiceCrop:把图像裁剪为四个角和一个中心
# TenCrop
# Pad:填充
# ColorJitter:随机改变图像的亮度对比度和饱和度。


http://www.ppmy.cn/news/1222687.html

相关文章

python之使用深度学习创建自己的表情符号

目录 部署项目1、首先运行train.py训练模型2、接下运行gui.py测试 一、使用 CNN 进行面部情绪识别二、GUI 代码和表情符号映射 在这个深度学习项目中,我们将对人类面部表情进行分类,以过滤和映射相应的表情符号或头像。 数据集(面部表情识别&…

监控直流防雷浪涌保护器综合方案

监控系统是一种广泛应用于安防、交通、工业、军事等领域的信息系统,它通过摄像机、传输线路、监控中心等设备,实现对目标区域的实时监视和控制。然而,监控系统也面临着雷电的威胁,雷电可能通过直击雷、感应雷、雷电波侵入等途径&a…

泛型编程 -- 模板详解

一、模板 在没有模板之前,如果我们写一个swap()两数交换函数,因为我们要支持 int 与int 交换 、double 与 double 交换等等情况,所以要实现swap()函数的多个重载,显得很繁琐,于是就引入了模板。 模板就是在需要模板的地…

Python PyQt 程序设置图标

源码运行时图标 第一步:阿里巴巴是两图标库下载喜欢的图标 iconfont-阿里巴巴矢量图标库 第二步:转化png为ico https://www.aconvert.com/cn/icon/png-to-ico/ 256x256为大图标 默认的32x32很小(不建议用) 转化后右键点击文件链接&…

keepalived安装配置(服务器主备、负载均衡)

系统拓扑 安装keepalived 主备服务器上都需要安装 在线安装 yum install -y keepalived 离线安装 # todo 服务器准备 虚拟机ip:192.168.11.56 主服务器:192.168.11.53 备服务器:192.168.11.54 配置文件修改 keepalived安装之后&…

kubernetes集群编排——etcd

备份 从镜像中拷贝etcdctl二进制命令 [rootk8s1 ~]# docker run -it --rm reg.westos.org/k8s/etcd:3.5.6-0 sh 输入ctrlpq快捷键,把容器打入后台 获取容器id [rootk8s1 ~]# docker ps 从容器拷贝命令到本机 docker container cp c7e28b381f07:/usr/local/bin/etcdc…

ncbi-datasets-cli-高效便捷下载NCBI数据

文章目录 简介安装datasets download下载基因组/基因序列按照GCA list文件编号下载下载大基因组genome完整参数gene参数 datasets summary下载元数据dataformat将json转换成表格格式通过json文件解析其他字段问题 简介 NCBI Datasets 可以轻松从 NCBI 数据库中收集数据。使用命…

聊聊ThreadLocal(二)

作者简介:大家好,我是smart哥,前中兴通讯、美团架构师,现某互联网公司CTO 联系qq:184480602,加我进群,大家一起学习,一起进步,一起对抗互联网寒冬 大部分面试官喜欢问Thr…