层序遍历
/*** Definition for a binary tree node.* type TreeNode struct {* Val int* Left *TreeNode* Right *TreeNode* }*/import ("container/list"
)func levelOrder(root *TreeNode) [][]int {// 思路1:此处肯定要使用队列result := [][]int{}if root == nil {return result}stack := list.New()stack.PushBack(root)for stack.Len() > 0 {stackLength := stack.Len()// 遍历每一层的所有节点newLis := []int{}for i := 0; i < stackLength; i++ {top := stack.Remove(stack.Front())node := top.(*TreeNode)newLis = append(newLis, node.Val)if node.Left != nil {stack.PushBack(node.Left)}if node.Right != nil {stack.PushBack(node.Right)}}result = append(result, newLis)}return result
}
107. 二叉树的层序遍历 II
这个题的意思是从底到上进行层次遍历。我就直接将上一题的从上到下的遍历结果,做一次翻转既可。
/*** Definition for a binary tree node.* type TreeNode struct {* Val int* Left *TreeNode* Right *TreeNode* }*/func levelOrderBottom(root *TreeNode) [][]int {// 思路:相当于是之前从顶往下的结果,反转一下// 这次使用自定义的队列吧,就不使用 container/list 了var (result [][]int)if root == nil {return result}var que []*TreeNodeque = append(que, root)for len(que) > 0 {length := len(que)partResult := []int{}for i := 0; i < length; i++ {front := que[0]que = que[1:]partResult = append(partResult, front.Val)if front.Left != nil {que = append(que, front.Left)}if front.Right != nil {que = append(que, front.Right)}}result = append(result, partResult)}// 反转结果var newResult [][]intfor i := len(result) - 1; i >= 0; i-- {newResult = append(newResult, result[i])}return newResult
}
199. 二叉树的右视图
目的:
思路:还是层次遍历,判断每一层 index 是否是最后一个。如果是,则将结果追加到result中。
/*** Definition for a binary tree node.* type TreeNode struct {* Val int* Left *TreeNode* Right *TreeNode* }*/
import "container/list"func rightSideView(root *TreeNode) []int {// 我的思路是,层次遍历,每次访问一层的最右边的点。var result []intif root == nil {return result}que := list.New()que.PushBack(root)for que.Len() > 0 {length := que.Len()for i := 0; i < length; i++ {front := que.Remove(que.Front())node := front.(*TreeNode)// 每层最后一个放入result中。if i == length - 1 {result = append(result, node.Val)}if node.Left != nil {que.PushBack(node.Left)}if node.Right != nil {que.PushBack(node.Right)}}}return result
}
637. 二叉树的层平均值
还是层次遍历的思路,计算每一层的平均值。
/*** Definition for a binary tree node.* type TreeNode struct {* Val int* Left *TreeNode* Right *TreeNode* }*/
import "container/list"func averageOfLevels(root *TreeNode) []float64 {// 思路:还是层次遍历,计算每一层的平均值。var result []float64if root == nil {return result}que := list.New()que.PushBack(root)for que.Len() > 0 {sum := 0length := que.Len()for i := 0; i < length; i++ {front := que.Remove(que.Front())node := front.(*TreeNode)sum += node.Valif node.Left != nil {que.PushBack(node.Left)}if node.Right != nil {que.PushBack(node.Right)}}result = append(result, float64(sum) / float64(length))}return result
}
429. N 叉树的层序遍历
换汤不换药
/*** Definition for a Node.* type Node struct {* Val int* Children []*Node* }*/import "container/list"func levelOrder(root *Node) [][]int {// 思路大差不差,依旧是层次遍历var result [][]intif root == nil {return result}que := list.New()que.PushBack(root)for que.Len() > 0 {length := que.Len()var partResult []intfor i := 0; i < length; i++ {front := que.Remove(que.Front())node := front.(*Node)partResult = append(partResult, node.Val)for _, item := range node.Children {que.PushBack(item)}}result = append(result, partResult)}return result
}
515.在每个树⾏中找最⼤值
/*** Definition for a binary tree node.* type TreeNode struct {* Val int* Left *TreeNode* Right *TreeNode* }*/
func largestValues(root *TreeNode) []int {var result []intif root == nil {return result}que := list.New()que.PushBack(root)for que.Len() > 0 {length := que.Len()maxValue := que.Front().Value.(*TreeNode).Valfor i := 0; i < length; i++ {front := que.Remove(que.Front())node := front.(*TreeNode)// 每层最后一个放入result中。if node.Val > maxValue {maxValue = node.Val}if node.Left != nil {que.PushBack(node.Left)}if node.Right != nil {que.PushBack(node.Right)}}result = append(result, maxValue)}return result
}
226.翻转二叉树
不可以使用 中序遍历,因为左边的调整完后,返回到根节点后,左边的换到右边,这是又开始调整“左边的”了,相当与右边的没动。
可是使用前序遍历、后序遍历。
/*** Definition for a binary tree node.* type TreeNode struct {* Val int* Left *TreeNode* Right *TreeNode* }*/
func invertTree(root *TreeNode) *TreeNode {// 思路:利用递归遍历,进行调整// 不可以使用 中序遍历,因为左边的调整完后,返回到根节点后,左边的换到右边,这是又开始调整“左边的”了,相当与右边的没动。// 三部曲:参数和返回值、单层逻辑、终止条件// 前序遍历:根左右if root == nil {return nil}root.Left, root.Right = root.Right, root.LeftinvertTree(root.Left)invertTree(root.Right)return root
}