seccomp学习 (1)

news/2025/1/16 21:05:16/

文章目录

  • 0x01. seccomp规则添加原理
    • A. 默认规则
    • B. 自定义规则
  • 0x02. seccomp沙箱“指令”格式
    • 实例
      • Task 01
      • Task 02
  • 0x03. 总结

今天打了ACTF-2023,惊呼已经不认识seccomp了,在被一道盲打题折磨了一整天之后,实在是不想面向题目高强度学习了。但是seccomp这个东西必然是要系统性的重学一遍了,绝不能把知识面仅限于orw。

学习目标:了解seccomp的保护原理,掌握常用的seccomp绕过姿势,学会手写seccomp BPF指令等。

0x01. seccomp规则添加原理

说到seccomp,都知道它是用来限制进程的系统调用的,但是对于Linux系统而言,有这么多的进程,seccomp又是如何精准拦截定义了规则的进程中调用的非法的系统调用呢?

这就又不得不进入一个令人不适的环节了——Linux源代码阅读。

在目前使用的Linux系统中,有两个系统调用与seccomp有关,一个是prctl,另一个是seccomp,系统调用号分别为157和317,对应的内核函数为sys_prctlsys_seccomp

SYSCALL_DEFINE3(seccomp, unsigned int, op, unsigned int, flags,void __user *, uargs)
{return do_seccomp(op, flags, uargs);
}
SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,unsigned long, arg4, unsigned long, arg5)
{...switch (option) {...case PR_GET_SECCOMP:error = prctl_get_seccomp();break;case PR_SET_SECCOMP:error = prctl_set_seccomp(arg2, (char __user *)arg3);break;...}...
}long prctl_set_seccomp(unsigned long seccomp_mode, void __user *filter)
{unsigned int op;void __user *uargs;switch (seccomp_mode) {case SECCOMP_MODE_STRICT:op = SECCOMP_SET_MODE_STRICT;/** Setting strict mode through prctl always ignored filter,* so make sure it is always NULL here to pass the internal* check in do_seccomp().*/uargs = NULL;break;case SECCOMP_MODE_FILTER:op = SECCOMP_SET_MODE_FILTER;uargs = filter;break;default:return -EINVAL;}/* prctl interface doesn't have flags, so they are always zero. */return do_seccomp(op, 0, uargs);
}

可以看到,如果将prctl系统调用的第一个参数设置为PR_SET_SECCOMP,最终调用的与sys_seccomp相同,都是do_seccomp。这也是设置seccomp规则的入口函数。

/* Common entry point for both prctl and syscall. */
static long do_seccomp(unsigned int op, unsigned int flags,void __user *uargs)
{switch (op) {case SECCOMP_SET_MODE_STRICT:if (flags != 0 || uargs != NULL)return -EINVAL;return seccomp_set_mode_strict();case SECCOMP_SET_MODE_FILTER:return seccomp_set_mode_filter(flags, uargs);case SECCOMP_GET_ACTION_AVAIL:if (flags != 0)return -EINVAL;return seccomp_get_action_avail(uargs);case SECCOMP_GET_NOTIF_SIZES:if (flags != 0)return -EINVAL;return seccomp_get_notif_sizes(uargs);default:return -EINVAL;}
}

上面就是do_seccomp函数的定义。我们要重点关注的是前面两个switch分支,一个是SECCOMP_SET_MODE_STRICT

A. 默认规则

添加默认规则的逻辑在seccomp_set_mode_strict中实现:

static long seccomp_set_mode_strict(void)
{const unsigned long seccomp_mode = SECCOMP_MODE_STRICT;long ret = -EINVAL;spin_lock_irq(&current->sighand->siglock);if (!seccomp_may_assign_mode(seccomp_mode))goto out;#ifdef TIF_NOTSCdisable_TSC();
#endifseccomp_assign_mode(current, seccomp_mode, 0);ret = 0;out:spin_unlock_irq(&current->sighand->siglock);return ret;
}static inline bool seccomp_may_assign_mode(unsigned long seccomp_mode)
{assert_spin_locked(&current->sighand->siglock);if (current->seccomp.mode && current->seccomp.mode != seccomp_mode)return false;return true;
}#define SECCOMP_MODE_STRICT 0
#define SECCOMP_MODE_FILTER 1

函数中的current是一个task_struct实例,表示当前内核进程。在加锁之后,调用了一个seccomp_may_assign_mode函数用于判断。从这个判断函数可以发现,当我们使用BPF定义规则(此时mode为SECCOMP_MODE_FILTER)时,就不能再切换成严格模式了,否则该函数返回false,直接跳过了规则修改流程。

随后进入主要的规则添加逻辑seccomp_assign_mode函数:

static inline void seccomp_assign_mode(struct task_struct *task,unsigned long seccomp_mode,unsigned long flags)
{assert_spin_locked(&task->sighand->siglock);task->seccomp.mode = seccomp_mode;/** Make sure SYSCALL_WORK_SECCOMP cannot be set before the mode (and* filter) is set.*/smp_mb__before_atomic();/* Assume default seccomp processes want spec flaw mitigation. */if ((flags & SECCOMP_FILTER_FLAG_SPEC_ALLOW) == 0)arch_seccomp_spec_mitigate(task);set_task_syscall_work(task, SECCOMP);
}/* Valid flags for SECCOMP_SET_MODE_FILTER */
#define SECCOMP_FILTER_FLAG_TSYNC		(1UL << 0)
#define SECCOMP_FILTER_FLAG_LOG			(1UL << 1)
#define SECCOMP_FILTER_FLAG_SPEC_ALLOW		(1UL << 2)
#define SECCOMP_FILTER_FLAG_NEW_LISTENER	(1UL << 3)
#define SECCOMP_FILTER_FLAG_TSYNC_ESRCH		(1UL << 4)
/* Received notifications wait in killable state (only respond to fatal signals) */
#define SECCOMP_FILTER_FLAG_WAIT_KILLABLE_RECV	(1UL << 5)#define set_task_syscall_work(t, fl) \set_bit(SYSCALL_WORK_BIT_##fl, &task_thread_info(t)->syscall_work)enum syscall_work_bit {SYSCALL_WORK_BIT_SECCOMP,SYSCALL_WORK_BIT_SYSCALL_TRACEPOINT,SYSCALL_WORK_BIT_SYSCALL_TRACE,SYSCALL_WORK_BIT_SYSCALL_EMU,SYSCALL_WORK_BIT_SYSCALL_AUDIT,SYSCALL_WORK_BIT_SYSCALL_USER_DISPATCH,SYSCALL_WORK_BIT_SYSCALL_EXIT_TRAP,
};

在这个函数之中,设置了当前进程的mode,随后出现了一个判断,判断成功时执行arch_seccomp_spec_mitigate函数。这个函数的内部逻辑比较复杂,先略过。最后调用set_task_syscall_work,这是一个宏定义,定义如上所示,就是设置一个位,表示这个线程已经开启了seccomp检查。

B. 自定义规则

对于自定义规则而言,添加的过程要复杂许多。

static long seccomp_set_mode_filter(unsigned int flags,const char __user *filter)
{const unsigned long seccomp_mode = SECCOMP_MODE_FILTER;struct seccomp_filter *prepared = NULL;long ret = -EINVAL;int listener = -1;struct file *listener_f = NULL;/* Validate flags. */if (flags & ~SECCOMP_FILTER_FLAG_MASK)return -EINVAL;/** In the successful case, NEW_LISTENER returns the new listener fd.* But in the failure case, TSYNC returns the thread that died. If you* combine these two flags, there's no way to tell whether something* succeeded or failed. So, let's disallow this combination if the user* has not explicitly requested no errors from TSYNC.*/if ((flags & SECCOMP_FILTER_FLAG_TSYNC) &&(flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) &&((flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) == 0))return -EINVAL;/** The SECCOMP_FILTER_FLAG_WAIT_KILLABLE_SENT flag doesn't make sense* without the SECCOMP_FILTER_FLAG_NEW_LISTENER flag.*/if ((flags & SECCOMP_FILTER_FLAG_WAIT_KILLABLE_RECV) &&((flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) == 0))return -EINVAL;/* Prepare the new filter before holding any locks. */prepared = seccomp_prepare_user_filter(filter);if (IS_ERR(prepared))return PTR_ERR(prepared);if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) {listener = get_unused_fd_flags(O_CLOEXEC);if (listener < 0) {ret = listener;goto out_free;}listener_f = init_listener(prepared);if (IS_ERR(listener_f)) {put_unused_fd(listener);ret = PTR_ERR(listener_f);goto out_free;}}/** Make sure we cannot change seccomp or nnp state via TSYNC* while another thread is in the middle of calling exec.*/if (flags & SECCOMP_FILTER_FLAG_TSYNC &&mutex_lock_killable(&current->signal->cred_guard_mutex))goto out_put_fd;spin_lock_irq(&current->sighand->siglock);if (!seccomp_may_assign_mode(seccomp_mode))goto out;if (has_duplicate_listener(prepared)) {ret = -EBUSY;goto out;}ret = seccomp_attach_filter(flags, prepared);if (ret)goto out;/* Do not free the successfully attached filter. */prepared = NULL;seccomp_assign_mode(current, seccomp_mode, flags);
out:spin_unlock_irq(&current->sighand->siglock);if (flags & SECCOMP_FILTER_FLAG_TSYNC)mutex_unlock(&current->signal->cred_guard_mutex);
out_put_fd:if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) {if (ret) {listener_f->private_data = NULL;fput(listener_f);put_unused_fd(listener);seccomp_notify_detach(prepared);} else {fd_install(listener, listener_f);ret = listener;}}
out_free:seccomp_filter_free(prepared);return ret;
}

函数中有很多的判断条件,当这些判断条件不满足时,会直接返回一个错误值。需要注意的是flags & ~SECCOMP_FILTER_FLAG_MASK = 0,也就是flags除了最低6位其他位必须全为0。

通过3个判断之后,调用了seccomp_prepare_user_filter函数初始化struct seccomp_filter结构体实例。

struct seccomp_filter {refcount_t refs;refcount_t users;bool log;bool wait_killable_recv;struct action_cache cache;struct seccomp_filter *prev;struct bpf_prog *prog;struct notification *notif;struct mutex notify_lock;wait_queue_head_t wqh;
};static struct seccomp_filter *
seccomp_prepare_user_filter(const char __user *user_filter)
{struct sock_fprog fprog;struct seccomp_filter *filter = ERR_PTR(-EFAULT);#ifdef CONFIG_COMPATif (in_compat_syscall()) {struct compat_sock_fprog fprog32;if (copy_from_user(&fprog32, user_filter, sizeof(fprog32)))goto out;fprog.len = fprog32.len;fprog.filter = compat_ptr(fprog32.filter);} else /* falls through to the if below. */
#endifif (copy_from_user(&fprog, user_filter, sizeof(fprog)))goto out;filter = seccomp_prepare_filter(&fprog);
out:return filter;
}struct sock_fprog {	/* Required for SO_ATTACH_FILTER. */unsigned short		len;	/* Number of filter blocks */struct sock_filter __user *filter;
};struct sock_filter {	/* Filter block */__u16	code;   /* Actual filter code */__u8	jt;	/* Jump true */__u8	jf;	/* Jump false */__u32	k;      /* Generic multiuse field */
};

从上面的结构体定义和函数定义可以看出,我们传入的用户态指针需要是sock_fprog结构体实例,Linux中定义了一个seccomp规则的最大长度为4096,即len必须位于(0,4096],上面的sock_filter可以理解为seccomp沙箱的一条“指令”。在seccomp_prepare_user_filter中也有一些检查,通过返回值我们就可以知道是针对什么的检查,后面两个是EACCESENOMEM,一个是权限相关,一个是内存不够,一般都不会发生。随后就是将用户传递的过滤器中的内容保存到seccomp_filter实例中返回。

初始化seccomp_filter完成后,我们先略过后面对一些flags的特殊处理,判断了一下是否能够加载规则,随后调用了seccomp_attach_filter,主要是处理已有的flags,随后将新的filter规则添加到头部的位置,使用prev属性连接成一个单链表,如下所示。

static long seccomp_attach_filter(unsigned int flags,struct seccomp_filter *filter)
{unsigned long total_insns;struct seccomp_filter *walker;assert_spin_locked(&current->sighand->siglock);/* Validate resulting filter length. */total_insns = filter->prog->len;for (walker = current->seccomp.filter; walker; walker = walker->prev)total_insns += walker->prog->len + 4;  /* 4 instr penalty */if (total_insns > MAX_INSNS_PER_PATH)return -ENOMEM;.../** If there is an existing filter, make it the prev and don't drop its* task reference.*/filter->prev = current->seccomp.filter;seccomp_cache_prepare(filter);current->seccomp.filter = filter;atomic_inc(&current->seccomp.filter_count);/* Now that the new filter is in place, synchronize to all threads. */if (flags & SECCOMP_FILTER_FLAG_TSYNC)seccomp_sync_threads(flags);return 0;
}

以上就是过滤器添加的大致流程。

0x02. seccomp沙箱“指令”格式

seccomp沙箱的每一条指令的长度都是8字节,分为4个字段——code、jt、jf、k。

struct sock_filter {	/* Filter block */__u16	code;   /* Actual filter code */__u8	jt;	/* Jump true */__u8	jf;	/* Jump false */__u32	k;      /* Generic multiuse field */
};

在Linux中定义了一些方便编写seccomp code的宏定义(code含义定义在 /include/uapi/linux/bpf_common.h 中),这里引用资料中的注释便于理解:

#ifndef BPF_STMT
#define BPF_STMT(code, k) { (unsigned short)(code), 0, 0, k }
#endif
#ifndef BPF_JUMP
#define BPF_JUMP(code, k, jt, jf) { (unsigned short)(code), jt, jf, k }
#endif/* Instruction classes */                    
#define BPF_CLASS(code) ((code) & 0x07)    //指定操作的类别
#define        BPF_LD        0x00               //将值复制到累加器中
#define        BPF_LDX        0x01               //将值加载到索引寄存器中
#define        BPF_ST        0x02               //将累加器中的值存到暂存器
#define        BPF_STX        0x03               //将索引寄存器的值存储在暂存器中
#define        BPF_ALU        0x04               //用索引寄存器或常数作为操作数在累加器上执行算数或逻辑运算
#define        BPF_JMP        0x05               //跳转
#define        BPF_RET        0x06               //返回
#define        BPF_MISC        0x07           // 其他类别/* ld/ldx fields */
#define BPF_SIZE(code)  ((code) & 0x18)
#define        BPF_W        0x00 /* 32-bit */       //字
#define        BPF_H        0x08 /* 16-bit */       //半字
#define        BPF_B        0x10 /*  8-bit */       //字节
/* eBPF        BPF_DW        0x18    64-bit */       //双字
#define BPF_MODE(code)  ((code) & 0xe0)
#define        BPF_IMM        0x00                  //常数 
#define        BPF_ABS        0x20                  //固定偏移量的数据包数据(绝对偏移)
#define        BPF_IND        0x40                  //可变偏移量的数据包数据(相对偏移)
#define        BPF_MEM        0x60                  //暂存器中的一个字
#define        BPF_LEN        0x80                  //数据包长度
#define        BPF_MSH        0xa0/* alu/jmp fields */
#define BPF_OP(code)    ((code) & 0xf0)       //当操作码类型为ALU时,指定具体运算符   
#define        BPF_ADD        0x00        
#define        BPF_SUB        0x10
#define        BPF_MUL        0x20
#define        BPF_DIV        0x30
#define        BPF_OR        0x40
#define        BPF_AND        0x50
#define        BPF_LSH        0x60
#define        BPF_RSH        0x70
#define        BPF_NEG        0x80
#define        BPF_MOD        0x90
#define        BPF_XOR        0xa0//当操作码是jmp时指定跳转类型
#define        BPF_JA        0x00
#define        BPF_JEQ        0x10
#define        BPF_JGT        0x20
#define        BPF_JGE        0x30
#define        BPF_JSET        0x40
#define BPF_SRC(code)   ((code) & 0x08)
#define        BPF_K        0x00                    //常数
#define        BPF_X        0x08                    //索引寄存器

在笔者查资料的时候,发现这个BPF不仅能用来编写seccomp规则,它更像是一个较为成熟的汇编语言+胶水语言,并在2014年就拥有了自己的执行引擎eBPF。这又是一个完全的知识体系。

网络上针对BPF大多是通过C等进行编译获得BPF代码,但对于seccomp而言,我们要做的是直接编写BPF code。但专用于seccomp的BPF除了通用的BPF语法之外,还有一些额外的定义:

/** All BPF programs must return a 32-bit value.* The bottom 16-bits are for optional return data.* The upper 16-bits are ordered from least permissive values to most,* as a signed value (so 0x8000000 is negative).** The ordering ensures that a min_t() over composed return values always* selects the least permissive choice.*/
#define SECCOMP_RET_KILL_PROCESS 0x80000000U /* kill the process */
#define SECCOMP_RET_KILL_THREAD	 0x00000000U /* kill the thread */
#define SECCOMP_RET_KILL	 SECCOMP_RET_KILL_THREAD
#define SECCOMP_RET_TRAP	 0x00030000U /* disallow and force a SIGSYS */
#define SECCOMP_RET_ERRNO	 0x00050000U /* returns an errno */
#define SECCOMP_RET_USER_NOTIF	 0x7fc00000U /* notifies userspace */
#define SECCOMP_RET_TRACE	 0x7ff00000U /* pass to a tracer or disallow */
#define SECCOMP_RET_LOG		 0x7ffc0000U /* allow after logging */
#define SECCOMP_RET_ALLOW	 0x7fff0000U /* allow *//* Masks for the return value sections. */
#define SECCOMP_RET_ACTION_FULL	0xffff0000U
#define SECCOMP_RET_ACTION	0x7fff0000U
#define SECCOMP_RET_DATA	0x0000ffffU

上面定义了seccomp BPF的返回值,从注释可知,返回值的低16bit用于传递其他数据,高16bit用于传递返回值的优先级。当一个系统调用匹配了多个seccomp规则时,会优先使用优先级高的返回值,这里从SECCOMP_RET_KILL_PROCESS的优先级最高,SECCOMP_RET_ALLOW最低,如果一个系统调用匹配了两个规则,返回值分别为SECCOMP_RET_KILLSECCOMP_RET_ALLOW,那么最终将会选择SECCOMP_RET_KILL作为返回值,即杀死触发这个系统调用的线程。

/*** struct seccomp_data - the format the BPF program executes over.* @nr: the system call number* @arch: indicates system call convention as an AUDIT_ARCH_* value*        as defined in <linux/audit.h>.* @instruction_pointer: at the time of the system call.* @args: up to 6 system call arguments always stored as 64-bit values*        regardless of the architecture.*/
struct seccomp_data {int nr;__u32 arch;__u64 instruction_pointer;__u64 args[6];
};

上面这段代码定义了一些编写seccomp BPF code可能会用到的东西,根据注释可知,我们可以在BPF code中获取该系统调用的:系统调用号、处理器架构、指令地址、6个参数的值。具体选择获取什么通过字段k来决定,k相当于seccomp_data结构体的偏移量,若指定k=0,则为获取nr,即系统调用号,若k=4,则为获取处理器架构等。

我们以一个实例对seccomp BPF code进行理解,尝试通过机器码恢复code本身。

 line  CODE  JT   JF      K
=================================0000: 0x20 0x00 0x00 0x00000004  LD | ABS | Word, R0 = arch0001: 0x15 0x00 0x19 0xc000003e  JMP | JEQ after 0x19, R0 == AUDIT_ARCH_X86_64 ?0002: 0x20 0x00 0x00 0x00000000  LD | ABS | Word, R0 = nr0003: 0x35 0x00 0x01 0x40000000  JMP | JGE after 0x01, R0 >= 0x40000000 ?0004: 0x15 0x00 0x16 0xffffffff  JMP | JEQ after 0x16, R0 == 0xFFFFFFFF ?0005: 0x15 0x15 0x00 0x00000000  JMP | JEQ after 0x15, R0 == 0 ?0006: 0x15 0x14 0x00 0x00000001  JMP | JEQ after 0x14, R0 == 1 ?0007: 0x15 0x13 0x00 0x00000002  JMP | JEQ after 0x13, R0 == 2 ?...0026: 0x06 0x00 0x00 0x7fff0000  return SECCOMP_RET_ALLOW0027: 0x06 0x00 0x00 0x00000000  return SECCOMP_RET_KILL

注意第二行的K字段,这里的K指的是AUDIT_ARCH_X86_64,定义于/include/uapi/linux/audit.h,其中为所有架构都定义了独特的标识符,而0xc000003e则是AUDIT_ARCH_X86_64的值。对于整个seccomp code而言,可能需要的外部数据也就只有seccomp_data了。

下面,我们就来通过一些具体的程序示例巩固一下我们的学习成果,使用seccomp BPF code完成自定义的filter规则。

实例

Task 01

实现seccomp BPF filter,过滤x86-64之外所有架构的所有系统调用,过滤execve。

实现代码:

#include <stdio.h>
#include <sys/prctl.h>
#include <linux/seccomp.h>
#include <linux/filter.h>
#include <stdlib.h>
#include <unistd.h>
#include <linux/unistd.h>
#include <linux/audit.h>
#include <stddef.h>int main(){struct sock_filter filter[] = {BPF_STMT(BPF_LD | BPF_W | BPF_ABS, offsetof(struct seccomp_data, arch)),BPF_JUMP(BPF_JMP | BPF_JEQ, AUDIT_ARCH_X86_64, 0, 4),BPF_STMT(BPF_LD | BPF_W | BPF_ABS, offsetof(struct seccomp_data, nr)),BPF_STMT(BPF_ALU | BPF_K | BPF_SUB, 59),BPF_JUMP(BPF_JMP | BPF_JEQ, 0, 0, 1),BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_ALLOW),BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_KILL)};struct sock_fprog prog = {.len = (unsigned short)(sizeof(filter) / sizeof(struct sock_filter)),.filter = filter,};prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog);system("echo HELLO");
}

上述代码实现了对处理器架构与execve的检查,使用了一个ALU类型指令将系统调用号减去59,随后与0相比较。

对于seccomp BPF code而言,使用一个寄存器实际上已经足够了,对于多个返回值,我们可以在BPF code的最后几行进行统一定义,在编写前面的代码时,由于跳转指令的数量不确定,有时可能需要预留跳转数,在code编写完成后再进行计算。而对于seccomp的多个检查,我们完全可以将code除了返回之外的所有代码分片看待,每一片都进行一个检查,不同分片之间互不影响,每个分片中只使用一个寄存器即可完成检查,因此总的seccomp BPF code也只需要一个寄存器即可实现,这就使得我们不需要了解所有的BPF指令即可完美编写seccomp BPF filter。

在加载seccomp规则之前,代码中还执行了一次prctl。这里引用参考资料:

PR_SET_NO_NEW_PRIVS():是在Linux 3.5 之后引入的特性,当一个进程或者子进程设置了PR_SET_NO_NEW_PRIVS 属性,则其不能访问一些无法共享的操作,如setuid、chroot等。配置seccomp-BPF的程序必须拥有Capabilities 中 的CAP_SYS_ADMIN,或者程序已经定义了no_new_privs属性。 若不这样做 非 root 用户使用该程序时 seccomp保护将会失效,设置了 PR_SET_NO_NEW_PRIVS 位后能保证 seccomp 对所有用户都能起作用

Task 02

实现seccomp BPF filter,过滤x86-64之外所有架构的所有系统调用,不允许第一个参数为3的read系统调用。

实现代码:

#include <stdio.h>
#include <sys/prctl.h>
#include <linux/seccomp.h>
#include <linux/filter.h>
#include <stdlib.h>
#include <unistd.h>
#include <linux/unistd.h>
#include <linux/audit.h>
#include <stddef.h>
#include <fcntl.h>int main(){struct sock_filter filter[] = {BPF_STMT(BPF_LD | BPF_W | BPF_ABS, offsetof(struct seccomp_data, arch)),BPF_JUMP(BPF_JMP | BPF_JEQ, AUDIT_ARCH_X86_64, 0, 5),BPF_STMT(BPF_LD | BPF_W | BPF_ABS, offsetof(struct seccomp_data, nr)),BPF_JUMP(BPF_JMP | BPF_JEQ, 0, 0, 2),BPF_STMT(BPF_LD | BPF_W | BPF_ABS, offsetof(struct seccomp_data, args[0])),BPF_JUMP(BPF_JMP | BPF_JEQ, 3, 1, 0),BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_ALLOW),BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_KILL)};struct sock_fprog prog = {.len = (unsigned short)(sizeof(filter) / sizeof(struct sock_filter)),.filter = filter,};prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog);int fd = open("/bin/ls", 0);char buffer[8];printf("%d\n", fd);read(fd, buffer, 8);
}

注意BPF_JUMP宏定义的使用,后面的2个参数分别表示条件成立时跳过前面几条指令,条件不成立时跳过前面几条指令。在上面的代码中,首先判断处理器架构,如果不是x86_64则跳转到KILL,随后首先判断系统调用号是不是3,不是则跳转到ALLOW,是则继续执行,判断第一个参数是不是3,如果是则跳转到KILL

0x03. 总结

本文简要分析了seccomp添加规则的流程,以及seccomp BPF的编写方法。

在后面的文章中,我们将尝试尽可能分析CTF pwn题中所有与seccomp有关的绕过姿势,并通过具体的示例进行学习。


http://www.ppmy.cn/news/1187100.html

相关文章

Google Archive Patch 基础应用代码记录

项目地址 Google Archive Patch 前置 <!-- 差量应用模块 --> <dependency><groupId>com.google.archivepatcher</groupId><artifactId>archive-patch-applier</artifactId><version>1.0.4</version><scope>test</…

Python+pytest+request 接口自动化测试!

一、环境配置 1.安装python3 brew update brew install pyenv 然后在 .bash_profile 文件中添加 eval “$(pyenv init -)” pyenv install 3.5.3 -v pyenv rehash 安装完成后&#xff0c;更新数据库 pyenv versions 查看目前系统已安装的 Python 版本 pyenv global 3.5…

手撕排序之直接选择排序

前言&#xff1a; 直接选择排序是排序中比较简单的排序&#xff0c;同时也是时间复杂度不是很优的排序。 思想&#xff1a; 本文主要讲解直接选择排序的优化版本。 我们经过一次遍历直接将该数列中最大的和最小的值挑选出来&#xff0c;如果是升序&#xff0c;就将最小的和…

function函数指针和lamada的[]和[=]注意事项

在工作的过程中&#xff0c;lamda表达式的 重点&#xff1a; 1.function对象存储函数指针。 2.lamada表达式&和捕捉的方式 lamda传入引用&&#xff0c;导致作用域消失&#xff0c;最终报错 std::function<void()> pFun; void GetNum1(const std::function<…

常用排序算法的理解

1.插入排序 插入排序的思想是将一个记录插入到已经排好序的有序表中&#xff0c;从而形成一个新的、记录数加1的有序表。在其实现过程使用双层循环&#xff0c;外层循环是进行插入的次数&#xff08;也可以理解为比较的轮数&#xff09;&#xff0c;内层循环是当前记录查找插入…

java毕业设计基于springboot+vue航空公司电子售票系统-机票预订系统

项目介绍 通篇文章的撰写基础是实际的应用需要&#xff0c;然后在架构系统之前全面复习大学所修习的相关知识以及网络提供的技术应用教程&#xff0c;以远程教育系统的实际应用需要出发&#xff0c;架构系统来改善现远程教育系统工作流程繁琐等问题。不仅如此以操作者的角度来…

npm install报错,解决记录

第一步&#xff1a;检查和安装 我这里建议检查 1.node.js版本是否和前使用版本一致 2.npm版本是否和前使用版本一致 3.vue版本是否和前使用版本一致 4.vue脚手架是否和前使用版本一致 5.npm镜像是否和前使用版本一致 1.检查版本 【node版本】 命令&#xff1a;node -v 结果&a…

Leetcode 557 反转字符串中的单词 III 简单

题目 - 点击直达 1. 557 反转字符串中的单词 III 简单1. 题目详情1. 原题链接2. 题目要求3. 基础框架 2. 解题思路1. 思路分析2. 时间复杂度3. 代码实现 1. 557 反转字符串中的单词 III 简单 1. 题目详情 给定一个字符串 s &#xff0c;你需要反转字符串中每个单词的字符顺序…