【机器学习合集】模型设计之网络宽度和深度设计 ->(个人学习记录笔记)

news/2024/12/29 1:43:45/

文章目录

  • 网络宽度和深度设计
    • 1. 什么是网络深度
      • 1.1 为什么需要更深的模型
        • 浅层学习的缺陷
        • 深度网络更好拟合特征
        • 学习更加简单
    • 2. 基于深度的模型设计
      • 2.1 AlexNet
      • 2.2 AlexNet工程技巧
      • 2.3 VGGNet
    • 3. 什么是网络宽度
      • 3.1 为什么需要足够的宽度
    • 4. 基于宽度模型的设计
      • 4.1 经典模型的宽度变化
      • 4.2 网络宽度设计

网络宽度和深度设计

在深度学习中,网络的宽度和深度是两个重要的超参数,它们对模型的性能和训练过程有重要影响。以下是有关网络宽度和深度的设计考虑:

  1. 网络宽度:
    • 网络宽度指的是每个层中的神经元数量。增加宽度可以增加模型的表示能力,有助于学习更复杂的模式。但要注意,增加宽度会增加模型的计算和内存需求,可能导致过拟合。
    • 网络宽度通常在训练集上产生较好的性能,但需要更多的数据来防止过拟合。如果你的数据有限,可以考虑减小网络宽度,以减少过拟合的风险。
    • 通常,增加宽度是一种增加模型复杂度的方式,适用于任务较复杂的问题,如大规模图像分类或自然语言处理。
  1. 网络深度:
    • 网络深度指的是神经网络中的层数。增加深度可以增加模型的抽象能力,使其能够学习更高级的特征。然而,深度也会增加训练时间和梯度消失/爆炸的问题。
    • 对于某些任务,深度网络可能不是最佳选择,因为训练深层网络可能会很困难,需要大量的数据和计算资源。
    • 深度网络在一些领域表现出色,如计算机视觉中的图像分割和自然语言处理中的机器翻译。

考虑网络宽度和深度时,可以尝试不同的组合,根据具体任务和资源进行调整。以下是一些通用建议:

  • 在开始设计时,可以选择一个较浅的网络和适度的宽度,然后逐渐增加深度和宽度,观察性能的变化。
  • 使用正则化技巧(如Dropout、L1/L2正则化)来减少过拟合风险,特别是在增加网络宽度和深度时。
  • 使用预训练模型(如预训练的卷积神经网络或Transformer模型)可以减少深度和宽度对大规模数据的依赖,并提供更好的初始权重。
  • 目标是找到适合任务的最佳网络结构,这通常需要进行实验和交叉验证。

总之,网络宽度和深度的设计取决于任务的复杂性、可用的数据和计算资源。在模型设计时,需要谨慎权衡它们,以实现最佳性能。

1. 什么是网络深度

定义: 深度学习的最重要属性,计算最长路径的卷积层+全连接层数量
在这里插入图片描述

1.1 为什么需要更深的模型

浅层学习的缺陷

在这里插入图片描述

深度网络更好拟合特征

在这里插入图片描述
在这里插入图片描述

学习更加简单

在这里插入图片描述

2. 基于深度的模型设计

2.1 AlexNet

在这里插入图片描述

2.2 AlexNet工程技巧

  • 多GPU训练
  • ReLU激活函数
  • LRN归一化
  • Dropout正则化
  • 重叠池化
  • 数据增强
    在这里插入图片描述

2.3 VGGNet

在这里插入图片描述

特点:

  • 加深网络,小卷积3*3

  • 随着网络深度的增加,性能变好,深度可达19层,拥有了比AlexNet低7%以上的错误率
  • 全部的卷积核大小为3×3,有更高的计算效率
  • 多尺度的数据增强操作

在这里插入图片描述

加深模型容易出现的问题: 深层模型优化问题

  • 难以优化,达到一定深度后性能反而下降,VGG19与VGG16对比
  • 更深更加容易过拟合
  • processing leve deprivation(PLD)现象,网络无法学习到简单而重要的函数
  • processing level saturation(PLS)现象,网络浅层饱和,无法发挥网络的性能

3. 什么是网络宽度

  • 每一个网络层的通道数,以卷积网络层计算

在这里插入图片描述

3.1 为什么需要足够的宽度

  • 更多的通道可以学习到更加丰富的特征

在这里插入图片描述

4. 基于宽度模型的设计

4.1 经典模型的宽度变化

  • 分类网络的通道数随着深度增加是一个逐渐增加的过程
    在这里插入图片描述

4.2 网络宽度设计

  1. 提高单层通道的利用率
    在这里插入图片描述
  2. 提高多层通道的利用率,密集连接网络(DenseNet),增强各层的信息流动
    在这里插入图片描述
  3. 模型表达能力,计算量,硬件友好程度
    在这里插入图片描述

注:部分内容来自阿里云天池


http://www.ppmy.cn/news/1185732.html

相关文章

<多线程章节八> 单例模式中的饿汉模式与懒汉模式的讲解,以及懒汉模式中容易引起的Bug

💐专栏导读 本篇文章收录于多线程,也欢迎翻阅博主的其他文章,可能也会让你有不一样的收获😄 🌷JavaSE 🍂多线程 🌾数据结构 文章目录 💐专栏导读💡饿汉模式💡…

图解Kafka高性能之谜(五)

高性能的多分区、冗余副本集群架构 高性能网络模型NIO 简单架构设计: 详细架构设计: 高性能的磁盘写技术 高性能的消息查找设计 索引文件定位使用跳表的设计 偏移量定位消息时使用稀疏索引: 高响应的磁盘拷贝技术 kafka采用sendFile()的…

【ARMv8 SIMD和浮点指令编程】NEON 通用数据处理指令——复制、反转、提取、转置...

NEON 通用数据处理指令包括以下指令(不限于): • DUP 将标量复制到向量的所有向量线。 • EXT 提取。 • REV16、REV32、REV64 反转向量中的元素。 • TBL、TBX 向量表查找。 • TRN 向量转置。 • UZP、ZIP 向量交叉存取和反向交叉存取。 1 DUP (element) 将…

独创改进 | RT-DETR 引入 Asymptotic Hybrid Encoder | 渐进混合特征解码结构

本专栏内容均为博主独家全网首发,未经授权,任何形式的复制、转载、洗稿或传播行为均属违法侵权行为,一经发现将采取法律手段维护合法权益。我们对所有未经授权传播行为保留追究责任的权利。请尊重原创,支持创作者的努力,共同维护网络知识产权。 文章目录 网络结构实验结果…

一直“卡在配置更新请不要关闭计算机”怎么办?攻略来啦

一直卡在“正在配置更新请不要关闭计算机”怎么办?很多用户在更新系统时,一直卡在配置已完成100%的界面,很长时间都不能重启进入到系统中。 面对这种情况,很多人都不知道应该如何解决,那么本期内容就来为大家讲解三种…

【PyQt5】遇到QThread:Destroyed while thread is still running 解决方法

PyQt5在执行多线程的时候遇到:QThread:Destroyed while thread is still running 错误分析: QThread的子线程还在运行但是线程就被销毁了,导致程序闪崩,该错误是笔者用终端执行py文件时提示的。 解决方法: 方法一&…

电子邮件钓鱼攻击的防范:如何识别并避免网络诈骗

在数字化的今天,电子邮件成为我们日常工作和生活中不可或缺的通讯工具。然而,电子邮件钓鱼攻击也随之成为网络诈骗的常见手法。通过识别和避免电子邮件钓鱼攻击,我们可以在很大程度上保护自己的网络安全。本文将为您提供一些实用的识别和防范…

在Qt中List View和List Widget的区别是什么,以及如何使用它们

2023年10月29日,周日晚上 目录 List View和List Widget的区别 如何使用QListView 如何使用QListWidget List View和List Widget的区别 在Qt中,QListView 和 QListWidget 是用于显示列表数据的两个常用控件,它们有一些区别和特点。 1. 数…