轨迹规划 | 图解分析人工势场算法APF(附ROS C++/Python/Matlab仿真)

news/2025/1/6 7:05:06/

目录

  • 0 专栏介绍
  • 1 传统避障方法缺陷
  • 2 APF基本原理
  • 3 人工势场可视化
  • 4 仿真实现
    • 4.1 ROS C++实现
    • 4.2 Python实现
    • 4.3 Matlab实现

0 专栏介绍

🔥附C++/Python/Matlab全套代码🔥课程设计、毕业设计、创新竞赛必备!详细介绍全局规划(图搜索、采样法、智能算法等);局部规划(DWA、APF等);曲线优化(贝塞尔曲线、B样条曲线等)。

🚀详情:图解自动驾驶中的运动规划(Motion Planning),附几十种规划算法


1 传统避障方法缺陷

传统的避障方法通常基于几何或图形算法,缺乏对环境动态性和实时性的适应能力。例如,环境在实时操作中可能会出现移动障碍物、临时障碍物等情况,传统方法需要对全局障碍重新建模,产生巨大的计算开销。

在这里插入图片描述

与之相对,人工势场法(Artificial Potential Field, APF)基于机器人与障碍物之间的相互作用来生成路径,因此不需要进行全局路径搜索,避免了大量的计算开销。这使得人工势场法能够实现快速的响应和实时的避障能力,非常适合需要快速决策和动态调整路径的应用场景。此外,通过合理设计势场函数和调节参数,可以灵活地处理复杂环境中的多障碍物情况,增加了系统的鲁棒性和可扩展性。

接下来详细介绍人工势场算法的基本原理。

2 APF基本原理

人工势场法的基本思想是在机器人运动环境中创建一个势场 U \boldsymbol{U} U,该势场分为两部分:

  • 由目标位置产生的指向目标的引力场 U g \boldsymbol{U}_g Ug
  • 由障碍物产生的远离障碍物的斥力场 U d \boldsymbol{U}_d Ud

通过障碍物的斥力场和目标位置的引力场共同作用形成一个虚拟的人工势场,再搜索一条势函数下降的方向,寻找一条无碰撞的最优路径,其原理如图所示。

在这里插入图片描述

常见的引力势函数为

U g = 1 2 λ g ( x − x g ) T ( x − x g ) \boldsymbol{U}_g=\frac{1}{2}\lambda _g\left( \boldsymbol{x}-\boldsymbol{x}_g \right) ^T\left( \boldsymbol{x}-\boldsymbol{x}_g \right) Ug=21λg(xxg)T(xxg)

其中 x \boldsymbol{x} x为机器人所处的位置向量, x g \boldsymbol{x}_g xg为目标位置向量。引力势函数的负梯度即为引力函数

F g = − ∇ x U g = − λ g ( x − x g ) \boldsymbol{F}_g=-\nabla _{\boldsymbol{x}}\boldsymbol{U}_g=-\lambda _g\left( \boldsymbol{x}-\boldsymbol{x}_g \right) Fg=xUg=λg(xxg)

常见的斥力势函数

U d = { 1 2 λ d ( 1 d − 1 d 0 ) 2 , d ⩽ d 0 0 , d > d 0 \boldsymbol{U}_d=\begin{cases} \frac{1}{2}\lambda _d\left( \frac{1}{d}-\frac{1}{d_0} \right) ^2, d\leqslant d_0\\ 0 , d>d_0\\\end{cases} Ud= 21λd(d1d01)2,dd00,d>d0

其中 d d d为当前机器人距离障碍物的最小距离, d 0 d_0 d0为斥力场作用限,常见的距离度量为欧式距离

d = ( x − x d ) T ( x − x d ) d=\sqrt{\left( \boldsymbol{x}-\boldsymbol{x}_d \right) ^T\left( \boldsymbol{x}-\boldsymbol{x}_d \right)} d=(xxd)T(xxd)

斥力势函数的负梯度即为斥力函数

F d = − ∇ x U d = { λ d ( 1 d − 1 d 0 ) 1 d 2 ∇ x d , d ⩽ d 0 0 , d > d 0 \boldsymbol{F}_d=-\nabla _{\boldsymbol{x}}\boldsymbol{U}_d=\begin{cases} \lambda _d\left( \frac{1}{d}-\frac{1}{d_0} \right) \frac{1}{d^2}\nabla _{\boldsymbol{x}}d, d\leqslant d_0\\ 0 , d>d_0\\\end{cases} Fd=xUd={λd(d1d01)d21xd,dd00,d>d0

在连续地图中, ∇ x d \nabla _{\boldsymbol{x}}d xd可以由距离函数微分导出;在栅格地图中, ∇ x d \nabla _{\boldsymbol{x}}d xd可以由栅格代价差分近似。基于引力和斥力,机器人受到的总力为

F = F g + ∑ F d \boldsymbol{F}=\boldsymbol{F}_g+\sum{\boldsymbol{F}_d} F=Fg+Fd

人工势场法的算法流程如表所示。

在这里插入图片描述

3 人工势场可视化

人工势场可视化如下所示,颜色越深说明势垒越高

在这里插入图片描述

4 仿真实现

4.1 ROS C++实现

核心代码如下所示

bool APFPlanner::computeVelocityCommands(geometry_msgs::Twist& cmd_vel)
{...// compute the tatget pose and force at the current stepEigen::Vector2d attr_force, rep_force, net_force;rep_force = getRepulsiveForce();while (plan_index_ < global_plan_.size()){target_ps_ = global_plan_[plan_index_];attr_force = getAttractiveForce(target_ps_);net_force = zeta_ * attr_force + eta_ * rep_force;...if (std::hypot(b_x_d, b_y_d) > p_window_)break;++plan_index_;}// smoothing the net force with historical net forces in the smoothing windowif (!hist_nf_.empty() && hist_nf_.size() >= s_window_)hist_nf_.pop_front();hist_nf_.push_back(net_force);net_force = Eigen::Vector2d(0.0, 0.0);for (int i = 0; i < hist_nf_.size(); ++i)net_force += hist_nf_[i];net_force /= hist_nf_.size();// set the smoothed new_v...// set the desired angle and the angle error...// position reached...return true;
}

在这里插入图片描述

4.2 Python实现

(待补充)

4.3 Matlab实现

function nextPos = obstacleAvoid(curPos, goal, obstacle, d0, weight)lambdaG = 1;lambdaD = weight;obstacleNum = size(obstacle, 1);Fg = -lambdaG * (curPos - goal);Fd = zeros(obstacleNum, 2);function d = calDistance(p1, p2)d = sqrt(sum((p1 - p2).^2));endfor i=1:obstacleNum% distance between current pose and obstacle_idi = calDistance(obstacle(i, :), curPos');if di <= d0Fd(i, :) = lambdaD / sqrt(di) * (1 / di - 1 / d0) *  ...[(curPos(1) - obstacle(i, 1))    ...(curPos(2) - obstacle(i, 2))];endendFall = Fg + sum(Fd', 2);nextPos = Fall + curPos;
end

在这里插入图片描述

完整工程代码请联系下方博主名片获取


🔥 更多精彩专栏

  • 《ROS从入门到精通》
  • 《Pytorch深度学习实战》
  • 《机器学习强基计划》
  • 《运动规划实战精讲》

👇源码获取 · 技术交流 · 抱团学习 · 咨询分享 请联系👇

http://www.ppmy.cn/news/1174847.html

相关文章

npm install 报node-sass command failed

一、前言 最近在前端项目Vue项目install时会出现node-sass command failed的错误&#xff0c;原因是NodeJS和node-sass的版本不对应导致的&#xff0c;本文将给出解决方案。 二、解决方案 以下是NodeJS和node-sass版本的对照关系&#xff1a;

【RocketMQ系列十四】RocketMQ中消息堆积如何处理

您好&#xff0c;我是码农飞哥&#xff08;wei158556&#xff09;&#xff0c;感谢您阅读本文&#xff0c;欢迎一键三连哦。 &#x1f4aa;&#x1f3fb; 1. Python基础专栏&#xff0c;基础知识一网打尽&#xff0c;9.9元买不了吃亏&#xff0c;买不了上当。 Python从入门到精…

CPU缓存一致性协议剖析

CPU缓存一致性协议剖析 文章目录 前言缓存一致性经典问题并发读写导致的数据不一致问题需要缓存一致性协议的实例 常见协议java中的影响关于缓存一致性协议总结 前言 首先&#xff0c;我们需要了解什么是缓存一致性。多处理器系统中的每个处理器都有自己的缓存&#xff0c;用…

图像处理中底层、高层特征、上下文信息理解

1.图像的语义信息: 图像的语义分为视觉层、对象层和概念层。 视觉层即通常所理解的底层&#xff0c;即颜色、纹理和形状等等&#xff0c;这些特征都被称为底层特征语义&#xff1b; 对象层即中间层&#xff0c;通常包含了属性特征等&#xff0c;就是某一对象在某一时刻的状态&a…

Java面试题-Java核心基础-第十二天(SPI机制)

目录 一、什么是SPI机制 二、SPI机制的作用 三、SPI的一些应用 四、 例子 一、什么是SPI机制 SPI因为service provider interface 意为&#xff1a;服务提供者的接口 就是为服务提供者提供的接口&#xff0c;就是设计一套接口规范&#xff0c;然后不同的服务提供者去进行相…

Queue 的 poll() 和 remove()

在Queue接口中&#xff0c;poll()和remove()都是用于从队列中移除并返回头部元素的方法&#xff1a; 返回值: poll(): 如果队列为空&#xff0c;poll()方法会返回null&#xff0c;不会抛出异常。remove(): 如果队列为空&#xff0c;remove()方法会抛出NoSuchElementException异…

Java面试题-Java核心基础-第十三天(序列化)

目录 一、Java序列化与反序列化是什么&#xff1f; 二、为什么需要序列化与反序列化&#xff1f; 三、序列化的实现方式有哪些&#xff1f; 四、什么是serialVersionUID? 五、为什么还要显示指定serialVersionUID 六、serialVersionUID什么时候修改&#xff1f; 七、Jav…

分库分表-ShardingSphere 4.x(2)

❤️作者简介&#xff1a;2022新星计划第三季云原生与云计算赛道Top5&#x1f3c5;、华为云享专家&#x1f3c5;、云原生领域潜力新星&#x1f3c5; &#x1f49b;博客首页&#xff1a;C站个人主页&#x1f31e; &#x1f497;作者目的&#xff1a;如有错误请指正&#xff0c;将…