Leetcode链表问题汇总

news/2024/12/2 12:40:12/

目录

      • [2. 两数相加](https://leetcode.cn/problems/add-two-numbers/)
      • [206. 反转链表](https://leetcode.cn/problems/reverse-linked-list/)
      • [206. 反转链表 II](https://leetcode.cn/problems/reverse-linked-list-ii/)
      • [19. 删除链表的倒数第 N 个结点](https://leetcode.cn/problems/remove-nth-node-from-end-of-list/)
      • [21. 合并两个有序链表](https://leetcode.cn/problems/merge-two-sorted-lists/)
      • [61. 旋转链表](https://leetcode.cn/problems/rotate-list/)
      • [141. 环形链表](https://leetcode.cn/problems/linked-list-cycle/)
      • [142. 环形链表 II](https://leetcode.cn/problems/linked-list-cycle-ii/)
      • [143. 重排链表](https://leetcode.cn/problems/reorder-list/)

2. 两数相加

比较简单的题目,头结点标示的个位数字,因此直接模拟就可以了。注意链表相关的题目可以添加一个虚拟头节点,用来简化一些边界情况的处理。

/*** Definition for singly-linked list.* struct ListNode {*     int val;*     ListNode *next;*     ListNode() : val(0), next(nullptr) {}*     ListNode(int x) : val(x), next(nullptr) {}*     ListNode(int x, ListNode *next) : val(x), next(next) {}* };*/
class Solution {
public:ListNode* addTwoNumbers(ListNode* l1, ListNode* l2) {ListNode* res = new ListNode(-1);ListNode* cur = res;int carry = 0; //进位标示while (l1 || l2) {int v1 = l1 ? l1 -> val : 0;int v2 = l2 ? l2 -> val : 0;int sum = v1 + v2 + carry;carry = sum / 10;cur -> next = new ListNode(sum % 10);cur = cur -> next;if (l1) l1 = l1 -> next;if (l2) l2 = l2 -> next;}if (carry) cur -> next = new ListNode(1);return res -> next;}
};

206. 反转链表

翻转即将所有节点的next指针指向前驱节点。由于是单链表,我们在迭代时不能直接找到前驱节点,所以我们需要一个额外的指针保存前驱节点。同时在改变当前节点的next指针前,不要忘记保存它的后继节点。
其实相当于头插法!

/*** Definition for singly-linked list.* struct ListNode {*     int val;*     ListNode *next;*     ListNode() : val(0), next(nullptr) {}*     ListNode(int x) : val(x), next(nullptr) {}*     ListNode(int x, ListNode *next) : val(x), next(next) {}* };*/
class Solution {
public:ListNode* reverseList(ListNode* head) {ListNode* prev = nullptr;ListNode* cur = head;while (cur) {ListNode* nxt = cur -> next;cur -> next = prev;prev = cur;cur = nxt;}return prev;}
};

还有一种递归的写法:
首先我们先考虑 reverseList 函数能做什么,它可以翻转一个链表,并返回新链表的头节点,也就是原链表的尾节点。
所以我们可以先递归处理 reverseList(head->next),这样我们可以将以head->next为头节点的链表翻转,并得到原链表的尾节点tail,此时head->next是新链表的尾节点,我们令它的next指针指向head,并将head->next指向空即可将整个链表翻转,且新链表的头节点是tail。

class Solution {
public:ListNode* reverseList(ListNode* head) {if (!head || !head->next) return head;ListNode *tail = reverseList(head->next);head->next->next = head;head->next = nullptr;return tail;}
};

206. 反转链表 II

/*** Definition for singly-linked list.* struct ListNode {*     int val;*     ListNode *next;*     ListNode() : val(0), next(nullptr) {}*     ListNode(int x) : val(x), next(nullptr) {}*     ListNode(int x, ListNode *next) : val(x), next(next) {}* };*/
class Solution {
public:ListNode* reverseBetween(ListNode* head, int left, int right) {ListNode* dummy = new ListNode(-1); // 建立一个虚拟头节点,因为有可能left==1,避免处理边界情况dummy -> next = head;auto a = dummy;for (int i = 0; i < left - 1; i++) a = a -> next; //找到left的前一个节点auto b = a -> next, c = b -> next;//接下来是反转链表的逻辑,要做right - left次for (int i = 0; i < right - left; i++) {auto d = c -> next;c -> next = b;b = c, c = d;}//两头的指针搞正确a -> next -> next = c;a -> next = b;return dummy -> next;}
};

19. 删除链表的倒数第 N 个结点

找到前面的那个点,改掉指针即可。

/*** Definition for singly-linked list.* struct ListNode {*     int val;*     ListNode *next;*     ListNode() : val(0), next(nullptr) {}*     ListNode(int x) : val(x), next(nullptr) {}*     ListNode(int x, ListNode *next) : val(x), next(next) {}* };*/
class Solution {
public:ListNode* removeNthFromEnd(ListNode* head, int n) {ListNode* dummy = new ListNode(-1);dummy -> next = head;// sz: 包含虚拟头结点的整个链表的长度int sz = 0;for (auto p = dummy; p; p = p -> next) sz++;// 倒数第N个节点,也就是正数的(sz+1-n)个点.// 要删除这个点,要先到它前面的那个点,也就是第(sz-n)个点,从dummy开始跳,需要跳(sz-n-1)步auto p = dummy;for (int i = 0; i < sz - n - 1; i++) p = p -> next;p -> next = p -> next -> next;return dummy -> next;}
};

21. 合并两个有序链表

判断大小,直接模拟即可,注意代码的简洁性。

/*** Definition for singly-linked list.* struct ListNode {*     int val;*     ListNode *next;*     ListNode() : val(0), next(nullptr) {}*     ListNode(int x) : val(x), next(nullptr) {}*     ListNode(int x, ListNode *next) : val(x), next(next) {}* };*/
class Solution {
public:ListNode* mergeTwoLists(ListNode* l1, ListNode* l2) {ListNode* dummy=  new ListNode(-1);ListNode* tail = dummy;while (l1 && l2) {if (l1 -> val < l2 -> val) tail = tail -> next = l1, l1 = l1 -> next;else tail = tail -> next = l2, l2 = l2 -> next;}if (l1) tail -> next = l1;if (l2) tail -> next = l2;return dummy -> next;}
};

61. 旋转链表

相当于把后面一部分的链表拼接到前面

/*** Definition for singly-linked list.* struct ListNode {*     int val;*     ListNode *next;*     ListNode() : val(0), next(nullptr) {}*     ListNode(int x) : val(x), next(nullptr) {}*     ListNode(int x, ListNode *next) : val(x), next(next) {}* };*/
class Solution {
public:ListNode* rotateRight(ListNode* head, int k) {if (!head) return head;int sz = 0; //链表长度ListNode* tail; //当前链表的尾节点for (auto p = head; p; p = p -> next) {tail = p;sz++;}k %= sz;if (!k) return head;auto p = head;//找到前半部分的最后的元素for (int i = 0; i < sz - k - 1; i++) p = p -> next;//把后半部分拼到前面即可//1. 前半部分的尾结点的next指向空//2. 后半部分的尾结点的next指向链表的头结点tail -> next = head;head = p -> next; // 这个是最新的头结点p -> next = nullptr;return head;}
};

141. 环形链表

用两个指针从头开始扫描,第一个指针每次走一步,第二个指针每次走两步。如果走到 null,说明不存在环;否则如果两个指针相遇,则说明存在环。
原因:
假设链表存在环,则当第一个指针走到环入口时,第二个指针已经走到环上的某个位置,距离环入口还差 x 步。由于第二个指针每次比第一个指针多走一步,所以第一个指针再走 x步,两个指针就相遇了。
复杂度分析,由于慢指针走的总步数小于链表总长度,复杂度为 O ( N ) O(N) O(N).

/*** Definition for singly-linked list.* struct ListNode {*     int val;*     ListNode *next;*     ListNode(int x) : val(x), next(NULL) {}* };*/
class Solution {
public:bool hasCycle(ListNode *head) {if (!head || !head -> next) return false;ListNode* slow = head;ListNode* fast = head -> next;while (slow && fast) {if (slow == fast) return true;slow = slow -> next;fast = fast -> next;if (fast) fast = fast -> next;}return false;}
};

/br>

142. 环形链表 II

143. 重排链表


http://www.ppmy.cn/news/1174165.html

相关文章

文件上传接口

以下是一个简单的Java文件上传接口的示例代码&#xff1a; import org.springframework.http.HttpStatus;import org.springframework.http.ResponseEntity;import org.springframework.web.bind.annotation.PostMapping;import org.springframework.web.bind.annotation.Requ…

【前端设计模式】之调停者模式(中介者模式)

调停者模式是一种行为设计模式&#xff0c;它通过引入一个调停者对象来集中处理一组对象之间的交互。调停者模式的目标是减少对象之间的直接通信&#xff0c;从而降低耦合度&#xff0c;并且使代码更易于维护和扩展。 调停者模式特性 将对象之间的通信集中在一个调停者对象中…

基于SpringBoot的时间管理系统

基于SpringBoot的时间管理系统的设计与实现~ 开发语言&#xff1a;Java数据库&#xff1a;MySQL技术&#xff1a;SpringBootMyBatis工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 系统展示 登录界面 管理员界面 用户界面 摘要 基于Spring Boot的时间管理系统是一款功能丰富…

Java线程中sleep()、wait()、yield()、join()方法的使用

1.sleep() sleep(): sleep 方法属于 Thread 类&#xff0c;该行为中线程不会释放锁&#xff0c;只阻塞线程&#xff0c;让出cpu给其他线程&#xff0c;当达到指定的时间后会自动恢复运行状态继续运行。 2.wait() wait(): 该方法属于 Object 类&#xff0c;在这个过程里线程会…

算法进阶——数组中的逆序对

题目 在数组中的两个数字&#xff0c;如果前面一个数字大于后面的数字&#xff0c;则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数P。并将P对1000000007取模的结果输出。 即输出P mod 1000000007 数据范围&#xff1a;对于 50% 的数据, size≤104 对…

golang获取操作系统信息:CPU,内存,网络,磁盘,进程管理,传感器(温度,风扇,电池)

扩展包&#xff1a;github.com/shirou/gopsutil&#xff0c;此项目是在https://github.com/giampaolo/psutil的基础上&#xff0c;基于golang的实现。 go get github.com/shirou/gopsutil/v3 package mainimport ("fmt""github.com/shirou/gopsutil/v3/mem&qu…

SpringBoot整合Activiti7——任务监听器(七)

文章目录 一、任务监听器事件类型配置方式(选)代码实现xml文件创建监听器class方式expression方式delegateExpression 测试流程部署流程启动流程完成任务 一、任务监听器 任务监听器可以在任务创建、任务分配、任务完成、任务删除发生时触发&#xff0c;从而执行相应的逻辑。 事…

交换机基础(四):MSTP负载均衡配置案例

如图所示是某个企业内部核心网络的结构图&#xff0c;目前企业中有20个VLAN, 编号为VLAN1&#xff5e;VLAN20, 为了确保内部网络的可靠性&#xff0c;使用 了冗余链路和MSTP 协议。为了能更好地利用网络资源和带宽&#xff0c;现管理员希望通过配置MSTP 的负载均衡实现网络带宽…