基于YOLOv8的多目标检测与自动标注软件【python源码+PyqtUI界面+exe文件】【深度学习】

news/2025/3/26 4:58:08/

基本功能演示

在这里插入图片描述

摘要:YOLOv8是YOLO系列最新的版本,支持多种视觉任务。本文基于YOLOv8的基础模型实现了80种类别的目标检测,可以对图片进行批量自动标注,并将检测结果保存为YOLO格式便于后续进行其他任务训练。本文给出完整的Python实现代码,并且通过PyQT5实现了UI界面,更方便进行功能的展示,并且提供了可执行的exe文件。该软件支持图片视频以及摄像头进行目标检测,并保存检测结果;支持图片自动标注保存支持检测类别选择。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 前言
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • 80个目标检测类别说明
    • (1)图片检测演示
    • (2)视频检测演示
    • (3)摄像头检测演示
    • (4)保存检测结果与自动标注标签文件
  • 二、YOLOv8目标检测的基本原理
    • 1.基本原理
    • 2.核心功能代码实现
      • 2.1 YOLOv8检测图片代码
      • 2.2 YOLOv8检测视频代码
  • 【获取方式】
  • 结束语

点击跳转至文末《完整相关文件及源码》获取


前言

YOLOv8是一种前沿的计算机视觉技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。这种模型属于Ultralytics平台,它的优势在于速度快且准确率高,这得益于其"You Only Look Once"(你仅需看一遍)的工作原理。不仅如此,YOLOv8不仅限于检测任务,还拓展到了分类、分割、跟踪,甚至姿态估计等多个领域。

目标检测作为计算机视觉的重要任务之一,具有广泛的应用价值。例如,在交通管理中,可以通过实时车辆检测和跟踪来更好地管理交通流量;在智能监控中,可以用于识别异常行为或危险情况等。因此,YOLOv8这类高效准确的目标检测模型在各领域的应用具有重要意义。

博主根据YOLOv8的目标检测技术,基于python与Pyqt5开发了一款简洁的支持80个类别的目标检测自动化标注软件,可支持图片、视频以及摄像头目标检测,同时支持检测类型选择图片的批量自动标注,并将检测结果保存为YOLO格式的文件,用于后续训练。

软件基本界面如下图所示:
在这里插入图片描述

觉得不错的小伙伴,感谢点赞、关注加收藏!如果大家有任何建议或意见,欢迎在评论区留言交流!

一、软件核心功能介绍及效果演示

软件主要功能

1. 支持80个类别的目标检测,详细目标类别见下方说明;
2. 支持图片、视频及摄像头进行检测,并显示目标位置目标总数,保存检测结果;
3. 支持图片批量检测与自动标注,并将结果保存为YOLO格式文件,用于后续模型训练;
4. 支持单个类别的目标选择与检测,并保存检测结果与YOLO标签文件。

80个目标检测类别说明

本文是基于YOLOv8的基础训练模型进行开发的,模型使用的是COCO数据集。支持80个类别的目标检测,具体目标类别名称如下:

[   '人','自行车', '汽车', '摩托车', '飞机', '公共汽车', '火车','卡车', '船', '交通灯', '消防栓', '停车标志', '停车收费表','长凳', '鸟', '猫', '狗', '马', '羊', '牛', '大象', '熊','斑马', '长颈鹿', '背包', '雨伞','手袋', '领带', '手提箱','飞盘', '雪橇', '滑雪板', '运动球', '风筝', '棒球棒','棒球手套', '滑板', '冲浪板', '网球拍', '瓶子', '酒杯', '杯子','叉子', '刀', '汤匙', '碗', '香蕉', '苹果', '三明治', '橙子','西兰花', '胡萝卜', '热狗', '披萨', '甜甜圈', '蛋糕', '椅子','沙发', '盆栽植物', '床', '餐桌', '马桶', '电视', '笔记本电脑','鼠标', '遥控器', '键盘', '手机', '微波炉', '烤箱', '烤面包机','水槽', '冰箱', '书', '时钟', '花瓶', '剪刀', '泰迪熊', '吹风机', '牙刷']

包含了常见的人、汽车、公共汽车、交通灯等。

(1)图片检测演示

点击图片图标,选择需要检测的图片,或者点击文件夹图标,选择需要批量检测图片所在的文件夹,操作演示如下:
1. 点击选择类别下拉框后,会只对图片指定类别进行检测【默认检测全部类别】。
2. 点击保存按钮,会同时保存指定类别检测结果图片与其对应的YOLO标签文件。

在这里插入图片描述

(2)视频检测演示

点击视频图标,选择需要检测的视频,就会自动显示检测结果。也可以通过下拉框选择指定类别进行检测。点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
在这里插入图片描述

(3)摄像头检测演示

点击摄像头图标,可以打开摄像头进行检测,同样可以通过下拉框选择指定类别进行检测。
在这里插入图片描述

(4)保存检测结果与自动标注标签文件

点击保存按钮后,对于图片,会同时保存指定类别检测结果图片与其对应的YOLO标签文件;对于视频,只会保存指定类别检测结果视频。
检测的图片与视频结果会存储在save_data目录下:
在这里插入图片描述
对于图片,会将指定检测目标的结果存储为目标检测中YOLO格式,方便后续进行模型进行训练使用,存储路径为:save_data/yolo_labels。结果如下图所示:
在这里插入图片描述
自动标注的存储格式为YOLO目标检测格式说明如下:【保存的文件名与图片名称相同】
在这里插入图片描述

二、YOLOv8目标检测的基本原理

1.基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行

YOLOv8不仅限于检测任务,还拓展到了分类、分割、跟踪,甚至姿态估计等多个领域。比如,通过使用已经训练好的yolov8x-seg.pt模型,可以实现对输入图像的实例分割操作,从而得到图像中不同物体的分割结果。此外,利用YOLOv8还可以实现实时车辆检测、车辆跟踪、实时车速检测,以及检测车辆是否超速等功能。
其主要网络结构如下:
在这里插入图片描述
本文基于YOLOv8的基础的目标检测模型,该多目标检测与自动标注软件的开发。支持80种类型目标的检测与结果保存,同时能批量将图片的检测结果保存为YOLO格式,便于后续模型训练的使用。

2.核心功能代码实现

2.1 YOLOv8检测图片代码

from ultralytics import YOLO
import cv2
# 加载预训练模型
model = YOLO("yolov8n.pt", task='detect') 
# model = YOLO("yolov8n.pt") task参数也可以不填写,它会根据模型去识别相应任务类别
# 检测图片
results = model("./ultralytics/assets/bus.jpg")
res = results[0].plot()
cv2.imshow("YOLOv8 Inference", res)
cv2.waitKey(0)

在这里插入图片描述

2.2 YOLOv8检测视频代码

import cv2
from ultralytics import YOLO# Load the YOLOv8 model
model = YOLO('yolov8n.pt')
print('111')
# Open the video file
video_path = "1.mp4"
cap = cv2.VideoCapture(video_path)# Loop through the video frames
while cap.isOpened():# Read a frame from the videosuccess, frame = cap.read()if success:# Run YOLOv8 inference on the frameresults = model(frame)# Visualize the results on the frameannotated_frame = results[0].plot()# Display the annotated framecv2.imshow("YOLOv8 Inference", annotated_frame)# Break the loop if 'q' is pressedif cv2.waitKey(1) & 0xFF == ord("q"):breakelse:# Break the loop if the end of the video is reachedbreak# Release the video capture object and close the display window
cap.release()
cv2.destroyAllWindows()

请添加图片描述
以上便是关于YOLOv8的多目标检测与自动标注原理与代码介绍。针对以上内容,博主基于pythonPyqt5开发了一个可视化的YOLOv8多目标检测与自动标注软件,能够很好的支持图片、视频及摄像头的目标检测,支持检测类型的选择,同时支持自动标注文件保存为YOLO格式。

关于该YOLOv8多目标检测与自动标注软件涉及到的完整源码、UI界面代码以及可执行的exe【win10,64位】等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,回复【目标检测】即可获取下载方式

本文涉及到的完整全部程序文件:包括python源码、UI文件、可执行的exe文件等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.pyMainProgram.exe为可执行文件,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境。

关注下方名片GZH:【阿旭算法与机器学习】,回复【目标检测】即可获取下载方式


结束语

以上便是博主开发的关于YOLOv8多目标检测与自动标注软件的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!


http://www.ppmy.cn/news/1167192.html

相关文章

重磅发布!RflySim Cloud 智能算法云仿真平台亮相,助力大规模集群算法高效训练

RflySim Cloud智能算法云仿真平台(以下简称RflySim Cloud平台)是由卓翼智能及飞思实验室为无人平台集群算法验证、大规模博弈对抗仿真、人工智能模型训练等前沿研究领域研发的平台。主要由环境仿真模块、物理效应计算模块、多智能体仿真模块、分布式网络…

两周面试,遇到的那些奇事

最近两周在帮别的部门面试,期间遇到了许多典型案例。有的真正做到了学习一年,重复十年;有的一手好牌,打的稀碎;有的连基本的社交礼仪都不懂的…… 这里将这些案例和思考拿来分享,也是想让目前还从事软件行…

vue3后台管理系统之顶部tabbar组件搭建

1.1静态页面搭建 <template><div class"tabbar"><div class"tabbar_left"><!-- 面包屑 --><Breadcrumb /></div><div class"tabbar_right"><!-- 设置 --><Setting /></div></di…

Valgrind——c/c++内存检测工具

文章目录 前言检测说明泄露类型说明memcheck指令references 前言 Valgrind 是一个用于构建动态分析工具的检测框架。 Valgrind包含了可以自动检测多种内存管理和线程错误的工具&#xff0c;并对程序进行详细的分析。而且&#xff0c;还可以使用Valgrind来构建新工具。 检测说…

golang笔记17--编译调试go源码

golang笔记17--编译调试go源码 前置条件编译源码在 fmt 包中加自定义函数说明 当前go语言越来越流行了&#xff0c;各大厂商都有加大go工程师的需求&#xff0c;作为go语言的学习者&#xff0c;我们除了要了解如何使用go语言外&#xff0c;也有必要了解一下如何编译、调试go源码…

运维监控Zabbix部署

目录 运维监控Zabbix部署 1. 简介 2. 安装 ​编辑 2.1 安装前准备 - Mysql 2.2 安装Zabbix Server 和 Zabbix Agent 2.2.1 安装Zabbix yum库 2.2.2 安装Zabbix Server、前端、Agent 2.2.3 初始化Mysql数据库 2.2.4 为Zabbix Server配置数据库 2.2.5 配置Zab…

算法通关村第二关-青铜终于学会链表了

大家好我是苏麟 , 今天来学反转链表 . 反转链表 描述 : 给你单链表的头节点 head &#xff0c;请你反转链表&#xff0c;并返回反转后的链表。 LeetCode 206.反转链表 : 206. 反转链表 牛客 BM1 反转链表 : 分析 : 本题有两种方法&#xff0c;带头结点和不带头结点&am…

ios safari 正则兼容问题

背景: 系统是自己开发的采购管理系统; 最近升级系统之后客户反馈部分苹果手机现在在进入单据界面的时候报错, 内容显示不全; 安卓手机正常; 苹果首页是之前有使用过系统的才不行, 如果是之前没有使用过系统, 现在也是可以(后面查证这一点可能不是很准确, 跟是否等过过系统…