2、Kafka 生产者

news/2024/11/24 1:57:30/

3.1 生产者消息发送流程
3.1.1 发送原理
在消息发送的过程中,涉及到了两个线程——main 线程和 Sender 线程。在 main 线程
中创建了一个双端队列 RecordAccumulator。main 线程将消息发送给 RecordAccumulator,
Sender 线程不断从 RecordAccumulator 中拉取消息发送到 Kafka Broker。
在这里插入图片描述
3.1.2 生产者重要参数列表

在这里插入图片描述
3.2 异步发送 API
3.2.1 普通异步发送
1)需求:创建 Kafka 生产者,采用异步的方式发送到 Kafka Broker
在这里插入图片描述
2)代码编写
(1)创建工程 kafka
(2)导入依赖

<dependencies><dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId><version>3.0.0</version></dependency>
</dependencies>

(3)创建包名:com.atguigu.kafka.producer
(4)编写不带回调函数的 API 代码

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.Properties;
public class CustomProducer {public static void main(String[] args) throws 
InterruptedException {// 1. 创建 kafka 生产者的配置对象Properties properties = new Properties();// 2. 给 kafka 配置对象添加配置信息:bootstrap.serversproperties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, 
"hadoop102:9092");// key,value 序列化(必须):key.serializer,value.serializerproperties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, 
"org.apache.kafka.common.serialization.StringSerializer");properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, 
"org.apache.kafka.common.serialization.StringSerializer");// 3. 创建 kafka 生产者对象KafkaProducer<String, String> kafkaProducer = new 
KafkaProducer<String, String>(properties);// 4. 调用 send 方法,发送消息for (int i = 0; i < 5; i++) {kafkaProducer.send(new 
ProducerRecord<>("first","atguigu " + i));}// 5. 关闭资源kafkaProducer.close();}
}

测试:
①在 hadoop102 上开启 Kafka 消费者。

[hadoop103 kafka]$ bin/kafka-console-consumer.sh --
bootstrap-server hadoop102:9092 --topic first

②在 IDEA 中执行代码,观察 hadoop102 控制台中是否接收到消息

[hadoop102 kafka]$ bin/kafka-console-consumer.sh --
bootstrap-server hadoop102:9092 --topic first
atguigu 0
atguigu 1
atguigu 2
atguigu 3
atguigu 4

3.2.2 带回调函数的异步发送
回调函数会在 producer 收到 ack 时调用,为异步调用,该方法有两个参数,分别是元
数据信息(RecordMetadata)和异常信息(Exception),如果 Exception 为 null,说明消息发
送成功,如果 Exception 不为 null,说明消息发送失败。
注意:消息发送失败会自动重试,不需要我们在回调函数中手动重试。

import org.apache.kafka.clients.producer.*;
import java.util.Properties;
public class CustomProducerCallback {public static void main(String[] args) throws 
InterruptedException {// 1. 创建 kafka 生产者的配置对象Properties properties = new Properties();// 2. 给 kafka 配置对象添加配置信息properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, 
"hadoop102:9092");// key,value 序列化(必须):key.serializer,value.serializerproperties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, 
StringSerializer.class.getName());properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, 
StringSerializer.class.getName());// 3. 创建 kafka 生产者对象KafkaProducer<String, String> kafkaProducer = new 
KafkaProducer<String, String>(properties);// 4. 调用 send 方法,发送消息for (int i = 0; i < 5; i++) {// 添加回调kafkaProducer.send(new ProducerRecord<>("first", 
"prince " + i), new Callback() {
// 该方法在 Producer 收到 ack 时调用,为异步调用@Overridepublic void onCompletion(RecordMetadata metadata, 
Exception exception) {if (exception == null) {// 没有异常,输出信息到控制台System.out.println(" 主题: " + 
metadata.topic() + "->" + "分区:" + metadata.partition());} else {// 出现异常打印exception.printStackTrace();}}});// 延迟一会会看到数据发往不同分区Thread.sleep(2);}// 5. 关闭资源kafkaProducer.close();}
}

测试:
①在 hadoop102 上开启 Kafka 消费者。

[hadoop103 kafka]$ bin/kafka-console-consumer.sh --
bootstrap-server hadoop102:9092 --topic first

②在 IDEA 中执行代码,观察 hadoop102 控制台中是否接收到消息。

[hadoop102 kafka]$ bin/kafka-console-consumer.sh --
bootstrap-server hadoop102:9092 --topic first
prince 0
prince 1
prince 2
prince 3
prince 4

③在 IDEA 控制台观察回调信息。

主题:first->分区:0
主题:first->分区:0
主题:first->分区:1
主题:first->分区:1
主题:first->分区:1

3.3 同步发送 API
只需在异步发送的基础上,再调用一下 get()方法即可。

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.Properties;
import java.util.concurrent.ExecutionException;
public class CustomProducerSync {public static void main(String[] args) throws
InterruptedException, ExecutionException {// 1. 创建 kafka 生产者的配置对象Properties properties = new Properties();// 2. 给 kafka 配置对象添加配置信息properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102
:9092");// key,value 序列化(必须):key.serializer,value.serializerproperties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, 
StringSerializer.class.getName());properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, 
StringSerializer.class.getName());// 3. 创建 kafka 生产者对象KafkaProducer<String, String> kafkaProducer = new 
KafkaProducer<String, String>(properties);
// 4. 调用 send 方法,发送消息for (int i = 0; i < 10; i++) {// 异步发送 默认
// kafkaProducer.send(new 
ProducerRecord<>("first","kafka" + i));// 同步发送kafkaProducer.send(new 
ProducerRecord<>("first","kafka" + i)).get();}// 5. 关闭资源kafkaProducer.close();}
}

测试:
①在 hadoop102 上开启 Kafka 消费者。

[hadoop103 kafka]$ bin/kafka-console-consumer.sh --
bootstrap-server hadoop102:9092 --topic first

②在 IDEA 中执行代码,观察 hadoop102 控制台中是否接收到消息。

[hadoop102 kafka]$ bin/kafka-console-consumer.sh --
bootstrap-server hadoop102:9092 --topic first
atguigu 0
atguigu 1
atguigu 2
atguigu 3
atguigu 4

3.4 生产者分区
3.4.1 分区好处
在这里插入图片描述
3.4.2 生产者发送消息的分区策略
1)默认的分区器 DefaultPartitioner
在 IDEA 中 ctrl +n,全局查找 DefaultPartitioner。

/**
* The default partitioning strategy:
* <ul>
* <li>If a partition is specified in the record, use it
* <li>If no partition is specified but a key is present choose a 
partition based on a hash of the key
* <li>If no partition or key is present choose the sticky 
partition that changes when the batch is full.
* 
* See KIP-480 for details about sticky partitioning.
*/
public class DefaultPartitioner implements Partitioner {… …
}

在这里插入图片描述
2)案例一
将数据发往指定 partition 的情况下,例如,将所有数据发往分区 1 中。

import org.apache.kafka.clients.producer.*;
import java.util.Properties;
public class CustomProducerCallbackPartitions {public static void main(String[] args) {// 1. 创建 kafka 生产者的配置对象Properties properties = new Properties();// 2. 给 kafka 配置对象添加配置信息properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102
:9092");// key,value 序列化(必须):key.serializer,value.serializerproperties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, 
StringSerializer.class.getName());properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, 
StringSerializer.class.getName());KafkaProducer<String, String> kafkaProducer = new 
KafkaProducer<>(properties);for (int i = 0; i < 5; i++) {// 指定数据发送到 1 号分区,key 为空(IDEA 中 ctrl + p 查看参数)kafkaProducer.send(new ProducerRecord<>("first", 
1,"","prince " + i), new Callback() {@Overridepublic void onCompletion(RecordMetadata metadata, 
Exception e) {if (e == null){System.out.println(" 主题: " + 
metadata.topic() + "->" + "分区:" + metadata.partition());}else {e.printStackTrace();}}});}kafkaProducer.close();}
}

测试:
①在 hadoop102 上开启 Kafka 消费者。

[hadoop103 kafka]$ bin/kafka-console-consumer.sh --
bootstrap-server hadoop102:9092 --topic first

②在 IDEA 中执行代码,观察 hadoop102 控制台中是否接收到消息。

[hadoop102 kafka]$ bin/kafka-console-consumer.sh --
bootstrap-server hadoop102:9092 --topic first
prince 0
prince 1
prince 2
prince 3
prince 4

③在 IDEA 控制台观察回调信息。

主题:first->分区:1
主题:first->分区:1
主题:first->分区:1
主题:first->分区:1
主题:first->分区:1

3)案例二
没有指明 partition 值但有 key 的情况下,将 key 的 hash 值与 topic 的 partition 数进行取
余得到 partition 值。

import org.apache.kafka.clients.producer.*;
import java.util.Properties;
public class CustomProducerCallback {public static void main(String[] args) {Properties properties = new Properties();properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102
:9092");properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, 
StringSerializer.class.getName());properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, 
StringSerializer.class.getName());KafkaProducer<String, String> kafkaProducer = new 
KafkaProducer<>(properties);for (int i = 0; i < 5; i++) {// 依次指定 key 值为 a,b,f ,数据 key 的 hash 值与 3 个分区求余,
分别发往 120kafkaProducer.send(new ProducerRecord<>("first", 
"a","prince " + i), new Callback() {@Overridepublic void onCompletion(RecordMetadata metadata, 
Exception e) {if (e == null){System.out.println(" 主题: " + 
metadata.topic() + "->" + "分区:" + metadata.partition());}else {e.printStackTrace();}}});}kafkaProducer.close();}
}

测试:
①key="a"时,在控制台查看结果。

主题:first->分区:1
主题:first->分区:1
主题:first->分区:1
主题:first->分区:1
主题:first->分区:1

②key="b"时,在控制台查看结果。

主题:first->分区:2
主题:first->分区:2
主题:first->分区:2
主题:first->分区:2
主题:first->分区:2

③key="f"时,在控制台查看结果。

主题:first->分区:0
主题:first->分区:0
主题:first->分区:0
主题:first->分区:0
主题:first->分区:0

3.4.3 自定义分区器
如果研发人员可以根据企业需求,自己重新实现分区器。
1)需求
例如我们实现一个分区器实现,发送过来的数据中如果包含 atguigu,就发往 0 号分区,
不包含 atguigu,就发往 1 号分区。
2)实现步骤
(1)定义类实现 Partitioner 接口。
(2)重写 partition()方法。

import org.apache.kafka.clients.producer.Partitioner;
import org.apache.kafka.common.Cluster;
import java.util.Map;
/**
* 1. 实现接口 Partitioner
* 2. 实现 3 个方法:partition,close,configure
* 3. 编写 partition 方法,返回分区号
*/
public class MyPartitioner implements Partitioner {/* 返回信息对应的分区* @param topic 主题* @param key 消息的 key* @param keyBytes 消息的 key 序列化后的字节数组* @param value 消息的 value* @param valueBytes 消息的 value 序列化后的字节数组* @param cluster 集群元数据可以查看分区信息* @return*/@Overridepublic int partition(String topic, Object key, byte[] 
keyBytes, Object value, byte[] valueBytes, Cluster cluster) {// 获取消息String msgValue = value.toString();// 创建 partitionint partition;// 判断消息是否包含 atguiguif (msgValue.contains("atguigu")){partition = 0;}else {partition = 1;}// 返回分区号return partition;}// 关闭资源@Overridepublic void close() {}// 配置方法@Overridepublic void configure(Map<String, ?> configs) {}
}

(3)使用分区器的方法,在生产者的配置中添加分区器参数。

import org.apache.kafka.clients.producer.*;
import java.util.Properties;
public class CustomProducerCallbackPartitions {public static void main(String[] args) throws 
InterruptedException {
Properties properties = new Properties();properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102
:9092");properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, 
StringSerializer.class.getName());properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, 
StringSerializer.class.getName());// 添加自定义分区器
properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG,"com.atgui
gu.kafka.producer.MyPartitioner");KafkaProducer<String, String> kafkaProducer = new 
KafkaProducer<>(properties);for (int i = 0; i < 5; i++) {kafkaProducer.send(new ProducerRecord<>("first", 
"prince " + i), new Callback() {@Overridepublic void onCompletion(RecordMetadata metadata, 
Exception e) {if (e == null){System.out.println(" 主题: " + 
metadata.topic() + "->" + "分区:" + metadata.partition());}else {e.printStackTrace();}}});}kafkaProducer.close();}
}

(4)测试
①在 hadoop102 上开启 Kafka 消费者。

[hadoop103 kafka]$ bin/kafka-console-consumer.sh --
bootstrap-server hadoop102:9092 --topic first

②在 IDEA 控制台观察回调信息。

主题:first->分区:0
主题:first->分区:0
主题:first->分区:0
主题:first->分区:0
主题:first->分区:0

3.5 生产经验——生产者如何提高吞吐量
在这里插入图片描述

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.Properties;
public class CustomProducerParameters {public static void main(String[] args) throws 
InterruptedException {// 1. 创建 kafka 生产者的配置对象Properties properties = new Properties();// 2. 给 kafka 配置对象添加配置信息:bootstrap.serversproperties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, 
"hadoop102:9092");// key,value 序列化(必须):key.serializer,value.serializerproperties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, 
"org.apache.kafka.common.serialization.StringSerializer");properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, 
"org.apache.kafka.common.serialization.StringSerializer");// batch.size:批次大小,默认 16Kproperties.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);// linger.ms:等待时间,默认 0properties.put(ProducerConfig.LINGER_MS_CONFIG, 1);// RecordAccumulator:缓冲区大小,默认 32M:buffer.memoryproperties.put(ProducerConfig.BUFFER_MEMORY_CONFIG,33554432);// compression.type:压缩,默认 none,可配置值 gzip、snappy、
lz4 和 zstd
properties.put(ProducerConfig.COMPRESSION_TYPE_CONFIG,"snappy");// 3. 创建 kafka 生产者对象KafkaProducer<String, String> kafkaProducer = new 
KafkaProducer<String, String>(properties);// 4. 调用 send 方法,发送消息for (int i = 0; i < 5; i++) {kafkaProducer.send(new 
ProducerRecord<>("first","prince " + i));}// 5. 关闭资源kafkaProducer.close();}
} 

测试
①在 hadoop102 上开启 Kafka 消费者。

[hadoop103 kafka]$ bin/kafka-console-consumer.sh --
bootstrap-server hadoop102:9092 --topic first

②在 IDEA 中执行代码,观察 hadoop102 控制台中是否接收到消息。

[hadoop102 kafka]$ bin/kafka-console-consumer.sh --
bootstrap-server hadoop102:9092 --topic first
prince 0
prince 1
prince 2
prince 3
prince 4

3.6 生产经验——数据可靠性
1)ack 应答原理
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
2)代码配置

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.Properties;
public class CustomProducerAck {public static void main(String[] args) throws 
InterruptedException {// 1. 创建 kafka 生产者的配置对象Properties properties = new Properties();// 2. 给 kafka 配置对象添加配置信息:bootstrap.servers102:9092");// key,value 序列化(必须):key.serializer,value.serializerproperties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
StringSerializer.class.getName());properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, 
StringSerializer.class.getName());// 设置 acksproperties.put(ProducerConfig.ACKS_CONFIG, "all");// 重试次数 retries,默认是 int 最大值,2147483647properties.put(ProducerConfig.RETRIES_CONFIG, 3);// 3. 创建 kafka 生产者对象KafkaProducer<String, String> kafkaProducer = new 
KafkaProducer<String, String>(properties);// 4. 调用 send 方法,发送消息for (int i = 0; i < 5; i++) {kafkaProducer.send(new 
ProducerRecord<>("first","prince " + i));}// 5. 关闭资源kafkaProducer.close();}
}

3.7 生产经验——数据去重
3.7.1 数据传递语义
在这里插入图片描述
3.7.2 幂等性
1)幂等性原理
在这里插入图片描述
2)如何使用幂等性
开启参数 enable.idempotence 默认为 true,false 关闭。

3.7.3 生产者事务
1)Kafka 事务原理
在这里插入图片描述
2)Kafka 的事务一共有如下 5 个 API

// 1 初始化事务
void initTransactions();
// 2 开启事务
void beginTransaction() throws ProducerFencedException;
// 3 在事务内提交已经消费的偏移量(主要用于消费者)
void sendOffsetsToTransaction(Map<TopicPartition, OffsetAndMetadata> offsets,String consumerGroupId) throws 
ProducerFencedException;
// 4 提交事务
void commitTransaction() throws ProducerFencedException;
// 5 放弃事务(类似于回滚事务的操作)
void abortTransaction() throws ProducerFencedException;

3)单个 Producer,使用事务保证消息的仅一次发送

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.Properties;
public class CustomProducerTransactions {public static void main(String[] args) throws 
InterruptedException {// 1. 创建 kafka 生产者的配置对象Properties properties = new Properties();// 2. 给 kafka 配置对象添加配置信息properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092");// key,value 序列化properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, 
StringSerializer.class.getName());properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, 
StringSerializer.class.getName());// 设置事务 id(必须),事务 id 任意起名properties.put(ProducerConfig.TRANSACTIONAL_ID_CONFIG, 
"transaction_id_0");// 3. 创建 kafka 生产者对象KafkaProducer<String, String> kafkaProducer = new 
KafkaProducer<String, String>(properties);// 初始化事务kafkaProducer.initTransactions();// 开启事务kafkaProducer.beginTransaction();try {// 4. 调用 send 方法,发送消息for (int i = 0; i < 5; i++) {// 发送消息kafkaProducer.send(new ProducerRecord<>("first", 
"prince " + i));}
// int i = 1 / 0;// 提交事务kafkaProducer.commitTransaction();} catch (Exception e) {// 终止事务kafkaProducer.abortTransaction();} finally {// 5. 关闭资源kafkaProducer.close();}}
}

3.8 生产经验——数据有序
在这里插入图片描述
3.9 生产经验——数据乱序
在这里插入图片描述


http://www.ppmy.cn/news/1166608.html

相关文章

平板有必要买触控笔吗?推荐的ipad手写笔

iPad之所以能吸引这么多人&#xff0c;主要是因为它的功能出色。用来画画、做笔记&#xff0c;也是一种不错的体验。但如果只是用来看电视和打游戏的话&#xff0c;那就真的有点大材小用了。如果你不需要昂贵的苹果电容笔&#xff0c;也不需要用来专业的绘图&#xff0c;那你可…

学生学徒作品分享——金融大模型-房屋租金价格影响因素分析与预测

金融大模型-房屋租金价格影响因素分析与预测项目背景 广州作为中国最发达的城市之一&#xff0c;每年都吸引大量务工人员前来就业&#xff0c;而租房是他们需要解决的最大问题之一&#xff0c;各地区租房需求日益增长。在租房过程&#xff0c;价格、交通是重要的考虑因素&a…

笙默考试管理系统-MyExamTest----codemirror(39)

笙默考试管理系统-MyExamTest----codemirror&#xff08;39&#xff09; 目录 一、 笙默考试管理系统-MyExamTest 二、 笙默考试管理系统-MyExamTest 三、 笙默考试管理系统-MyExamTest 四、 笙默考试管理系统-MyExamTest 五、 笙默考试管理系统-MyExamTest 笙默考试…

如何理解TCP/IP协议?

一、是什么 TCP/IP&#xff0c;传输控制协议/网际协议&#xff0c;是指能够在多个不同网络间实现信息传输的协议簇 TCP&#xff08;传输控制协议&#xff09; 一种面向连接的、可靠的、基于字节流的传输层通信协议 IP&#xff08;网际协议&#xff09; 用于封包交换数据网…

JVM——JVM概述以及双亲委派机制

JVM探究 请你谈谈你对JVM的理解&#xff1f;Java8虚拟机和之前的有什么变化更新&#xff1f;什么是OOM&#xff0c;什么是栈溢出StackOverFlowError&#xff1f;怎么分析&#xff1f;JVM的常用调优参数有哪些&#xff1f;内存快照如何抓取&#xff1f;怎么分析Dump文件&#x…

【USRP】软件无线电基础篇:长波、中波、短波

一、频率和波长 类型频率波长长波30&#xff5e;300千赫&#xff08;KHz&#xff09;10&#xff5e;1千米中波300&#xff5e;3000千赫&#xff08;KHz&#xff09;10&#xff5e;1百米短波3&#xff5e;30兆赫&#xff08;MHz&#xff09;100&#xff5e;10米 二、传输距离 …

spark获取hadoop服务token

spark 作业一直卡在accepted 问题现象问题排查1.查看yarn app日志2.问题分析与原因 问题现象 通过yarn-cluster模式提交spark作业&#xff0c;客户端日志一直卡在submit app&#xff0c;没有运行 问题排查 1.查看yarn app日志 appid已生成&#xff0c;通过yarn查看app状态为…

mysql MVC jsp实现表分页

mysql是轻量级数据库 在三层架构中实现简单的分页 在数据库sql编程中需要编写sql语句 SELECT * FROM sys.student limit 5,5; limit x,y x是开始节点&#xff0c;y是开始节点后的需要显示的长度。 在jdbc编程中需要给出x和y 一般是页数*页码&#xff0c;显示的长度。 代…