Stable Diffusion原理

news/2024/12/29 10:05:48/

一、Diffusion扩散理论

1.1、 Diffusion Model(扩散模型)

Diffusion扩散模型分为两个阶段:前向过程 + 反向过程

  • 前向过程:不断往输入图片中添加高斯噪声来破坏图像
  • 反向过程:使用一系列马尔可夫链逐步将噪声还原为原始图片

前向过程 ——>图片中添加噪声
反向过程——>去除图片中的噪声

在这里插入图片描述

1.2、 训练过程:U-Net网络

在每一轮的训练过程中,包含以下内容:

  1. 每一个训练样本对应一个随机时刻向量time step,编码时刻向量t转化为对应的time step Embedding向量;
  2. 将时刻向量t对应的高斯噪声ε应用到图片中,得到噪声图Noisy image
  3. 将成组的time step Embedding向量、Noisy image注入到U-Net训练;
  4. U-Net输出预测噪声Predicted noise,与真实高斯噪声True noise ε,构建损失。

在这里插入图片描述

下图是每个Epoch详细的训练过程:
在这里插入图片描述在这里插入图片描述

1.3、 推理过程:反向扩散

噪声图Noisy image经过训练后的U-Net网络,会得到预测噪声Predicted Noisy,而:去噪图Denoised image = 噪声图Noisy image - 预测噪声图Predicted Noisy。(计算公式省略了具体的参数,只表述逻辑关系)
在这里插入图片描述

1.4、 补充:U-Net结构

U-Net的模型结构就是一个编-解码的过程,下采样Downsample、中间块Middle block、上采样Upsample中都包含了ResNet残差网络

1、主干网络做特征提取;2、加强网络做特征组合;3、预测网络做预测输出;

在这里插入图片描述

1.5、补充:DM扩散模型的缺点

  1. Diffusion Model是在原图上完成前向、反向扩散过程,计算量巨大;
  2. Diffusion Model只与时刻向量t产生作用,生成的结果不可控;

二、Stable Diffusion原理

为改善DM扩散模型的缺点,Stable Diffusion引入图像压缩技术,在低维空间完成扩散过程;并添加CLIP模型,使文本-图像产生关联。

2.1、Stable Diffusion的改进点

1. 图像压缩DM扩散模型是直接在原图上进行操作,而Stale Diffusion是在较低维度的潜在空间上应用扩散过程,而不是使用实际像素空间,这样可以大幅减少内存和计算成本;
2. 文本-图像关联:在反向扩散过程中对U-Net的结构做了修改,使其可以添加文本向量Text Embedding,使得在每一轮的去噪过程中,让输出的图像与输入的文字产生关联;

在这里插入图片描述

2.2、Stable Diffusion的生成过程

Stable Diffusion在实际应用中的过程:原图——经过编码器E变成低维编码图——DM的前向过程逐步添加噪声,变成噪声图——TU-Net网络完成DM的反向过程——经过解码器D变成新图。

  1. Stable Diffusion会事先训练好一个编码器E、解码器D,来学习原始图像与低维数据之间的压缩、还原过程;
  2. 首先通过训练好的编码器E ,将原始图像压缩成低维数据,再经过多轮高斯噪声转化为低维噪声Latent data
  3. 然后用低维噪声Latent data、时刻向量t、文本向量Text Embedding、在U-Net网络进行T轮去噪,完成反向扩散过程;
  4. 最后将得到的低维去噪图通过训练好的解码器D,还原出原始图像,完成整个扩散生成过程。

2.3、补充:CLIP模型详解

CLIP(Contrastive Language-Image Pre-Training) 模型是 OpenAI 在 2021 年初发布的用于匹配图像文本的预训练神经网络模型,是近年来在多模态研究领域的经典之作。OpenAI 收集了 4 亿对图像文本对(一张图像和它对应的文本描述),分别将文本和图像进行编码,使用 metric learning进行训练。希望通过对比学习,模型能够学习到文本-图像对的匹配关系。

CLIP的论文地址

CLIP模型共有3个阶段:1阶段用作训练,2、3阶段用作推理。

  1. Contrastive pre-training:预训练阶段,使用图片 - 文本对进行对比学习训练;
  2. Create dataset classifier from label text:提取预测类别文本特征;
  3. Use for zero-shot predictiion:进行 Zero-Shot 推理预测;

在这里插入图片描述

2.3.1、训练阶段

通过计算文本和目标图像的余弦相似度从而获取预测值。CLIP模型主要包含以下两个模型;

  • Text Encoder:用来提取文本的特征,可以采用NLP中常用的text transformer模型;
  • Image Encoder:用来提取图像的特征,可以采用常用CNN模型或者vision transformer模型;

在这里插入图片描述
这里举例一个包含N个文本-图像对的训练batch,对提取的文本特征和图像特征进行训练的过程:

  1. 输入图片 —> 图像编码器 —> 图片特征向量;输入文字 —> 文字编码器 —> 文字特征向量;并进行线性投射,得到相同维度;
  2. N个文本特征和N个图像特征两两组合,形成一个具有N2个元素的矩阵;
  3. CLIP模型会预测计算出这N2个文本-图像对的相似度(文本特征和图像特征的余弦相似性即为相似度);
  4. 对角线上的N个元素因为图像-标签对应正确被作为训练的正样本,剩下的N2-N个元素作为负样本;
  5. CLIP的训练目标就是最大化N个正样本的相似度,同时最小化N2-N个负样本的相似度;

2.3.2、推理过程

CLIP的预测推理过程主要有以下两步:

  1. 提取预测类别的文本特征:由于CLIP 预训练文本端的输出输入都是句子,因此需要将任务的分类标签按照提示模板 (prompt template)构造成描述文本(由单词构造成句子):A photo of {object}.,然后再送入Text Encoder得到对应的文本特征。如果预测类别的数目为N,那么将得到N个文本特征。
  2. 进行 zero-shot 推理预测:将要预测的图像送入Image Encoder得到图像特征,然后与上述的N个文本特征计算余弦相似度(和训练过程一致),然后选择相似度最大的文本对应的类别作为图像分类预测结果。进一步地,可以将这些相似度看成输入,送入softmax后可以得到每个类别的预测概率。

在这里插入图片描述

2.3.3、补充:zero-shot 零样本学习

zero-shot :零样本学习,域外泛化问题。利用训练集数据训练模型,使得模型能够对测试集的对象进行分类,但是训练集类别和测试集类别之间没有交集,期间需要借助类别的描述,来建立训练集和测试集之间的联系,从而使得模型有效。

可以发现CLIP其实就是两个模型:视觉模型 + 文本模型。

在计算机视觉中,即便想迁移VGGMobileNet这种预训练模型,也需要经过预训练、微调等手段,才能学习数据集的数据特征,而CLIP可以直接实现zero-shot的图像分类,即不需要任何训练数据,就能在某个具体下游任务上实现分类,这也是CLIP亮点和强大之处。

我的猜测:CLIP的zero-shot能力是依赖于它预训练的4亿对图像-文本对,样本空间涵盖的太大,并不是真正的零样本学习,和解决域外泛化问题。和人脸比对的原理相似,依靠大量样本来学习分类对象的特征空间。人脸比对是image-to-image,CLIP是 image-to-text。

2.3.4、代码: CLIP实现zero-shot分类

OpenAI有关CLIP的代码链接地址

2.3.4.1、图像数据、文本数据

向模型提供8个示例图像及其文本描述,并比较相应特征之间的相似性

# images in skimage to use and their textual descriptions
descriptions = {"page": "a page of text about segmentation","chelsea": "a facial photo of a tabby cat","astronaut": "a portrait of an astronaut with the American flag","rocket": "a rocket standing on a launchpad","motorcycle_right": "a red motorcycle standing in a garage","camera": "a person looking at a camera on a tripod","horse": "a black-and-white silhouette of a horse", "coffee": "a cup of coffee on a saucer"
}

在这里插入图片描述

2.3.4.2、计算余弦相似度

在这里插入图片描述

2.3.4.3、Zero-Shot图像分类
from torchvision.datasets import CIFAR100cifar100 = CIFAR100(os.path.expanduser("~/.cache"), transform=preprocess, download=True)text_descriptions = [f"This is a photo of a {label}" for label in cifar100.classes]
text_tokens = clip.tokenize(text_descriptions).cuda()with torch.no_grad():text_features = model.encode_text(text_tokens).float()text_features /= text_features.norm(dim=-1, keepdim=True)text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
top_probs, top_labels = text_probs.cpu().topk(5, dim=-1)plt.figure(figsize=(16, 16))for i, image in enumerate(original_images):plt.subplot(4, 4, 2 * i + 1)plt.imshow(image)plt.axis("off")plt.subplot(4, 4, 2 * i + 2)y = np.arange(top_probs.shape[-1])plt.grid()plt.barh(y, top_probs[i])plt.gca().invert_yaxis()plt.gca().set_axisbelow(True)plt.yticks(y, [cifar100.classes[index] for index in top_labels[i].numpy()])plt.xlabel("probability")plt.subplots_adjust(wspace=0.5)
plt.show()

在这里插入图片描述

2.4、补充:Stable Diffusion训练的四个主流AI模型

  1. Dreambooth:会使用正则化。通常只用少量图片做输入微调,就可以做一些其他扩散模型不能或者不擅长的事情——具备个性化结果的能力,既包括文本到图像模型生成的结果,也包括用户输入的任何图片;
  2. text-inversion:通过控制文本到图像的管道,标记特定的单词,在文本提示中使用,以实现对生成图像的细粒度控制;
  3. LoRA:大型语言模型的低阶自适应,简化过程降低硬件需求;
  4. Hypernetwork:这是连接到Stable Diffusion模型上的一个小型神经网络,是噪声预测器U-Net的交叉互视(cross-attention)模块;

四个主流模型的区别:

  • Dreambooth最直接但非常复杂占内存大,用的人很多评价好;
  • text-inversion很聪明,不用重新创作一个新模型,所有人都可以下载并运用到自己的模型,模型小,存储空间占用小;
  • LoRA可以在不做完整模型拷贝的情况下,让模型理解这个概念,速度快;
  • Hypernetwork:没有官方论文;

三、补充:四大生成模型对比

GAN生成对抗模型、VAE变微分自动编码器、流模型、DM扩散模型

3.1、GAN生成对抗模型

  1. GAN模型要同时训练两个网络,难度较大,多模态分布学习困难;
  2. 不容易收敛,不好观察损失;
  3. 图像特征多样性较差,容易出现模型坍缩,只关注如何骗过判别器;

3.2、VAE变微分自动编码器

Deepfaker、DeepFaceLab的处理方式,生成中间状态

3.3、流模型

待完善

3.4、DM扩散模型

xx

参考:
神器CLIP:连接文本和图像,打造可迁移的视觉模型


http://www.ppmy.cn/news/1162429.html

相关文章

手写redux的connect方法, 使用了subscribe获取最新数据

一. 公共方法文件 1. connect文件 import React, { useState } from "react"; import MyContext from "./MyContext"; import _ from "lodash";// 模拟react-redux的 connect高阶函数 const connect (mapStateToProps, mapDispatchToProps) &…

【算法设计与分析】第6章02 分支限界法

目录 分支限界法的设计技术 分支限界法:  约束条件  剪枝  分支限界法的设计步骤 思考题: 【例6-6】装载问题。  计算模型 【例6-7】背包  问题分析  问题分析 计算模型  计算模型  算法设计与描述 代码: 思…

Elasticsearch小bug记录:term: XXX was completely eliminated by analyzer

问题: 下面这个报错,是在配置同义词的时候报的错:不能识别南京。 {"error": {"root_cause": [{"type": "illegal_argument_exception","reason": "failed to build synonyms"…

Yaml语法学习

SpringBoot使用一个全局的配置文件 , 配置文件名称是固定的 application.properties(官方不推荐) 语法结构 : keyvalue application.yml 语法结构 :key:空格 value server:port: 8081 配置文件的作用 &…

SpringCloud对服务内某个client进行单独配置

文章目录 问题解决过程问题解决 问题 我们的微服务项目用的是springCloud,某个微服务接口因为数据处理量大,出现了接口超时的情况,我们需要单独修改这一个feignClient的超时时间。 解决过程 一开始项目只是在application文件里面进行了全局…

【数据挖掘】数据挖掘、关联分析、分类预测、决策树、聚类、类神经网络与罗吉斯回归

目录 一、简介二、关于数据挖掘的经典故事和案例2.1 正在影响中国管理的10大技术2.2 从数字中能够得到什么?2.3 一个网络流传的笑话(转述)2.4 啤酒与尿布2.5 网上书店关联销售的案例2.6 数据挖掘在企业中的应用2.7 交叉销售 三、数据挖掘入门3.1 什么激发了数据挖掘…

vscode工程屏蔽不使用的文件夹或文件的方法

一. 简介 vscode是一款 微软提供的免费的代码编辑软件。 对于 IMX6ULL-ALPHA开发板而言,NXP官方uboot一定会支持不止 IMX6ULL芯片的代码,也不止支持 一种架构,还支持其他芯片或架构的源码文件。 为了方便阅读代码,vscode软件可…

学信息系统项目管理师第4版系列31_信息系统工程

1. 信息系统战略三角突出了业务战略、信息系统和组织机制之间的必要一致性 1.1. 【高23上选07】 2. 软件工程 2.1. 软件工程方法是完成软件工程项目的技术手段,它支持整个软件生命周期 2.2. 软件工程使用的工具是人们在开发软件的活动中智力和体力的扩展与延伸 …