CV计算机视觉每日开源代码Paper with code速览-2023.10.13

news/2024/12/29 16:14:20/

 精华置顶

墙裂推荐!小白如何1个月系统学习CV核心知识:链接

点击@CV计算机视觉,关注更多CV干货

论文已打包,点击进入—>下载界面

点击加入—>CV计算机视觉交流群

1.【基础网络架构】CHIP: Contrastive Hierarchical Image Pretraining

  • 论文地址:https://arxiv.org//pdf/2310.08304

  • 开源代码:GitHub - harshiljhaveri/CHIP

2.【基础网络架构:Transformer】AutoVP: An Automated Visual Prompting Framework and Benchmark

  • 论文地址:https://arxiv.org//pdf/2310.08381

  • 开源代码:GitHub - IBM/AutoVP: Code and Benchmark for the paper "AutoVP: An Automated Visual Prompting Framework and Benchmark"

3.【关键点检测】UniPose: Detecting Any Keypoints

  • 论文地址:https://arxiv.org//pdf/2310.08530

  • 工程主页:UniPose: Detecting Any Keypoints

  • 开源代码(即将开源):GitHub - IDEA-Research/UniPose: Official implementation of the paper "UniPose : Detecting Any Keypoints"

4.【点云】PonderV2: Pave the Way for 3D Foundataion Model with A Universal Pre-training Paradigm

  • 论文地址:https://arxiv.org//pdf/2310.08586

  • 开源代码:GitHub - Pointcept/Pointcept: Pointcept: a codebase for point cloud perception research. Latest works: PPT, MSC (CVPR'23), PTv2 (NeurIPS'22)

5.【点云分割】PointHR: Exploring High-Resolution Architectures for 3D Point Cloud Segmentation

  • 论文地址:https://arxiv.org//pdf/2310.07743

  • 开源代码:GitHub - haibo-qiu/PointHR: PointHR: Exploring High-Resolution Architectures for 3D Point Cloud Segmentation

6.【医学图像分割】Volumetric Medical Image Segmentation via Scribble Annotations and Shape Priors

  • 论文地址:https://arxiv.org//pdf/2310.08084

  • 开源代码:GitHub - Qybc/Scribble2D5: Scribble2D5: Weakly-Supervised Volumetric Image Segmentation via Scribble Annotations

7.【医学图像分割:3D】3D TransUNet: Advancing Medical Image Segmentation through Vision Transformers

  • 论文地址:https://arxiv.org//pdf/2310.07781

  • 开源代码:GitHub - Beckschen/3D-TransUNet: This is the official repository for the paper "3D TransUNet: Advancing Medical Image Segmentation through Vision Transformers"

8.【多模态】Visual Data-Type Understanding does not emerge from Scaling Vision-Language Models

  • 论文地址:https://arxiv.org//pdf/2310.08577

  • 开源代码(即将开源):GitHub - bethgelab/DataTypeIdentification: Code for the paper: "Visual Data-Type Understanding does not emerge from Scaling Vision-Language Models"

9.【多模态】Multimodal Variational Auto-encoder based Audio-Visual Segmentation

  • 论文地址:https://arxiv.org//pdf/2310.08303

  • 工程主页:Multimodal Variational Auto-encoder based Audio-Visual Segmentation

  • 开源代码(即将开源):GitHub - OpenNLPLab/MMVAE-AVS: Multimodal Variational Auto-encoder based Audio-Visual Segmentation [ICCV2023].

10.【多模态】Distilling from Vision-Language Models for Improved OOD Generalization in Vision Tasks

  • 论文地址:https://arxiv.org//pdf/2310.08255

  • 开源代码:GitHub - val-iisc/VL2V-ADiP: Distilling from Vision-Language Models for Improved OOD Generalization in Image Classification

11.【多模态】Lifelong Audio-video Masked Autoencoder with Forget-robust Localized Alignments

  • 论文地址:https://arxiv.org//pdf/2310.08204

  • 工程主页:FLAVA

  • 代码即将开源

12.【多模态】Generalized Logit Adjustment: Calibrating Fine-tuned Models by Removing Label Bias in Foundation Models

  • 论文地址:https://arxiv.org//pdf/2310.08106

  • 开源代码(即将开源):GitHub - BeierZhu/GLA: [NeurIPS 2023] Generalized Logit Adjustment (Coming Soon)

13.【多模态】SingleInsert: Inserting New Concepts from a Single Image into Text-to-Image Models for Flexible Editing

  • 论文地址:https://arxiv.org//pdf/2310.08094

  • 工程主页:SingleInsert

  • 开源代码(即将开源):GitHub - JarrentWu1031/SingleInsert: Official pytorch implementation for SingleInsert

14.【多模态】Can We Edit Multimodal Large Language Models?

  • 论文地址:https://arxiv.org//pdf/2310.08475

  • 开源代码:GitHub - zjunlp/EasyEdit: An Easy-to-use Knowledge Editing Framework for LLMs.

15.【自动驾驶:多模态感知】UniPAD: A Universal Pre-training Paradigm for Autonomous Driving

  • 论文地址:https://arxiv.org//pdf/2310.08370

  • 开源代码(即将开源):GitHub - Nightmare-n/UniPAD: UniPAD: A Universal Pre-training Paradigm for Autonomous Driving

16.【自动驾驶:协同感知】DUSA: Decoupled Unsupervised Sim2Real Adaptation for Vehicle-to-Everything Collaborative Perception

  • 论文地址:https://arxiv.org//pdf/2310.08117

  • 开源代码(即将开源):GitHub - refkxh/DUSA: [ACM MM 2023] Official implementation of DUSA: Decoupled Unsupervised Sim2Real Adaptation for Vehicle-to-Everything Collaborative Perception

17.【自动驾驶:仿真】DrivingDiffusion: Layout-Guided multi-view driving scene video generation with latent diffusion model

  • 论文地址:https://arxiv.org//pdf/2310.07771

  • 工程主页:DrivingDiffusion: Layout-Guided multi-view driving scene video generation with latent diffusion model

  • 开源代码(即将开源):GitHub - shalfun/DrivingDiffusion: Layout-Guided multi-view driving scene video generation with latent diffusion model

18.【Diffusion】HyperHuman: Hyper-Realistic Human Generation with Latent Structural Diffusion

  • 论文地址:https://arxiv.org//pdf/2310.08579

  • 工程主页:HyperHuman: Hyper-Realistic Human Generation with Latent Structural Diffusion

  • 开源代码(即将开源):GitHub - snap-research/HyperHuman: Github Repo for "HyperHuman: Hyper-Realistic Human Generation with Latent Structural Diffusion"

19.【Diffusion】MotionDirector: Motion Customization of Text-to-Video Diffusion Models

  • 论文地址:https://arxiv.org//pdf/2310.08465

  • 代码即将开源

20.【人体姿态估计】X-HRNet: Towards Lightweight Human Pose Estimation with Spatially Unidimensional Self-Attention

  • 论文地址:https://arxiv.org//pdf/2310.08042

  • 开源代码:GitHub - cool-xuan/x-hrnet: Official code for "X-HRNet: Towards Lightweight Human Pose Estimation with Spatially Unidimensional Self-Attention"

21.【人体运动生成】OmniControl: Control Any Joint at Any Time for Human Motion Generation

  • 论文地址:https://arxiv.org//pdf/2310.08580

  • 工程主页:OmniControl

  • 开源代码(即将开源):GitHub - neu-vi/OmniControl

22.【生成模型】Explorable Mesh Deformation Subspaces from Unstructured Generative Models

  • 论文地址:https://arxiv.org//pdf/2310.07814

  • 开源代码(即将开源):ArmanMaesumi/generative-mesh-subspaces · GitHub

23.【三维重建】Consistent123: Improve Consistency for One Image to 3D Object Synthesis

  • 论文地址:https://arxiv.org//pdf/2310.08092

  • 工程主页:Consistent123: Improve Consistency for One Image to 3D Object Synthesis

  • 代码即将开源

24.【图像分类:长尾分布】Long-Tailed Classification Based on Coarse-Grained Leading Forest and Multi-Center Loss

  • 论文地址:https://arxiv.org//pdf/2310.08206

  • 开源代码(即将开源):GitHub - jinyery/Cognisance: Long-tail Classification Based on Invariant Feature Learning from A Multi-granularity Perspective

论文已打包,点击进入—>下载界面

CV计算机视觉交流群

群内包含目标检测、图像分割、目标跟踪、Transformer、多模态、NeRF、GAN、缺陷检测、显著目标检测、关键点检测、超分辨率重建、SLAM、人脸、OCR、生物医学图像、三维重建、姿态估计、自动驾驶感知、深度估计、视频理解、行为识别、图像去雾、图像去雨、图像修复、图像检索、车道线检测、点云目标检测、点云分割、图像压缩、运动预测、神经网络量化、网络部署等多个领域的大佬,不定期分享技术知识、面试技巧和内推招聘信息

想进群的同学请添加微信号联系管理员:PingShanHai666。添加好友时请备注:学校/公司+研究方向+昵称

推荐阅读:

HSN:微调预训练ViT用于目标检测和语义分割,华南理工和阿里巴巴联合提出

EViT:借鉴鹰眼视觉结构,南开大学等提出ViT新骨干架构,在多个任务上涨点

CV计算机视觉每日开源代码Paper with code速览-2023.10.12

CV计算机视觉每日开源代码Paper with code速览-2023.10.11

CV计算机视觉每日开源代码Paper with code速览-2023.10.10


http://www.ppmy.cn/news/1155297.html

相关文章

【2023】redis-stream配合spring的data-redis详细使用(包括广播和组接收)

目录 一、简介1、介绍2、对比 二、整合spring的data-redis实现1、使用依赖2、配置类2.1、配置RedisTemplate bean2.2、异常类 3、实体类3.1、User3.2、Book 4、发送消息4.1、RedisStreamUtil工具类4.2、通过延时队列线程池模拟发送消息4.3、通过http主动发送消息 5、&#x1f3…

文件操作合集 - C语言

前言 由于我们每次打开程序写入的数据都是在内存中处理,关闭程序就直接没有了,下次还需要重新进行操作录入数据等,这里我们就可以使用文件来保存数据,更加持久化,下面我们基于c语言来介绍一些文件操作. 文件指针: 文件的打开和关闭 文件在读写之前应该先打开文件,在…

一文解读如何应用 REST 对资源进行访问?

文章目录 一、REST 简介二、涉及注解2.1 RequestMapping2.2 PathVariable2.3 RestController2.4 GetMapping、PostMapping、PutMapping、DeleteMapping补充:PathVariable、RequestBody、RequestParam 区别与应用 三、REST风格案例 一、REST 简介 REST (Representat…

Vue_Bug VUE-ADMIN-TEMPLATE-MASTER electron build后无法登录

Bug描述: VUE-ADMIN-TEMPLATE-MASTER 项目在经过 electron 的 build 命令后,无法登录 问题原因: 大部分vue 前段项目 会使用 js-cookie 这个库 来操作浏览器的cookie 然而这个库 在electron下 会无法使用 (最坑的是还没报错&…

python项目之AI动物识别工具的设计与实现(django)

项目介绍: 💕💕作者:落落 💕💕个人简介:混迹java圈十余年,擅长Java、小程序、Python等。 💕💕各类成品java毕设 。javaweb,ssm,spring…

多线程怎么共用一个事务

文章目录 场景分析测试对应的其他类我并没有贴出来,因为大家可以自己找个项目走一波测试testSession测试testTransaction 注意使用同一个sqlsession会导致线程安全问题,testSession方法就是在另外线程里面能读取到数据库里面没有的数据.但是有时候业务就是这么奇怪.扩展总结 场…

centos7安装部署ElasticSearch

文章目录 ElasticSearch安装部署简介安装卸载 ElasticSearch安装部署 简介 全文搜索属于最常见的需求,开源的 Elasticsearch (以下简称 es)是目前全文搜索引擎的首选。 它可以快速地储存、搜索和分析海量数据。维基百科、Stack Overflow、G…