Go 语言切片扩容规则是扩容2倍?1.25倍?到底几倍

news/2024/10/22 3:36:37/

本次主要来聊聊关于切片的扩容是如何扩的,还请大佬们不吝赐教

切片,相信大家用了 Go 语言那么久这这种数据类型并不陌生,但是平日里聊到关于切片是如何扩容的,很多人可能会张口就来,切片扩容的时候,如果老切片的容量小于 1024 那么就再扩容 1倍,也就是新的切片容量是老切片容量的两倍,同理,如果老切片容量大于 1024,那么就扩容1.25 倍

一个人这么说,多个人这么说,你可能就信了😂😂,可是大家都这么认为,我们就应该盲从吗?还是要自己去确认真实的扩容逻辑和实现方式,那就开始吧😁

结论先行,切片对于扩容并不一定是 2 倍,1.25倍,这个要看实际情况

本文分别从如下几点来聊聊切片的扩容

  • 扩容是针对切片的,数组无法扩容
  • 切片扩容到底是扩容到原来的几倍?
  • 我们一般使用切片的时候可以如何避免频繁的扩容?

扩容是针对切片的,数组无法扩容

首先需要明确,数组是不能扩容的,数组定义的时候就已经是定长的了,无法扩容

切片是可以扩容的,我们可以通过 append 追加的方式来向已有的切片尾部进行追加,若原有切片已满,那么就会发生扩容

另外,我们知道数组是一段连续的内存地址,同一种数据类型的数据集合,例如这样

func main() {log.SetFlags(log.Lshortfile)var demoArray = [5]int{1, 2, 3, 4, 5}log.Print("unsafe.sizeof(int) == ",unsafe.Sizeof(demoArray[0]))for i, _ := range demoArray {log.Printf("&demoAraay[%d] == %p", i, &demoArray[i])}}

可以看到在这个案例的环境中,一个 int 类型的变量占用 8 个字节,自然对于 demoArray 数组中,地址是连续的,每一个元素占用的空间也是我们所期望的

那么切片的数据地址也是连续的吗??

如果有人问这个问题,实际上是想问切片的底层数组的地址是不是也是连续的

我们知道,切片 slice 在 Go 中是一个结构体,其中 array 字段是一个指针,指向了一块连续的内存地址,也就是底层数组

type slice struct {array unsafe.Pointerlen   intcap   int
}

其中 len 字段记录了当前底层数组的实际有的元素个数,cap 表示底层数组的容量,自然也是切片slice 的容量

func main(){var demoSli = []int{1,2,3,4,5}log.Printf("len == %d,cap == %d",len(demoSli),cap(demoSli))for i, _ := range demoSli {log.Printf("&demoSli[%d] == %p", i, &demoSli[i])}
}

自然,demoSli 中的元素打印出来,地址也是连续的,没有毛病

此处 xdm 模拟的时候,切勿去打印拷贝值的地址,例如下面这种方式是相当不明智的

现在简单的去给 切片追加一个元素

可以看到切片的容量变成了原来的两倍(容量从 5 扩容成 10),且切片中底层数组的元素地址自然也是连续的,不需要着急下结论,继续往下看,好戏在后头

切片扩容到底是扩容到原来的几倍?

案例1 向一个cap 为 0 的切片中追加 2000 个元素,查看被扩容了几次

总共是扩容了 14 次

可以看到切片容量小于 1024 时,触发扩容都是扩容到原来的 2 倍,但是 大于 1024 之后,有的是 1.25 倍,有的是 1.35 倍,有的大于 1.35 倍,那么这是为什么呢?后面统一看源码

案例2 再次验证切片容量小于 1024,触发到扩容就一定是扩容 2 倍吗

  • 先初始化一个切片,里面有 5 个元素,len 为 5,cap 为 5
  • 再向切片中追加 6 个元素,分别是 6,7,8,9,10,11
  • 最终查看切片的容量是多少
func main(){var demoSli = []int{1, 2, 3, 4, 5}log.Printf("len == %d,cap == %d", len(demoSli), cap(demoSli))for i, _ := range demoSli {log.Printf("&demoSli[%d] == %p", i, &demoSli[i])}demoSli = append(demoSli,6,7,8,9,10,11)log.Printf("len == %d,cap == %d",len(demoSli),cap(demoSli))for i, _ := range demoSli {log.Printf("&demoSli[%d] == %p", i, &demoSli[i])}
}

通过这一段代码,我们可以看到,讲一个 len 为 5,cap 为 5 的切片,追加数字 6 的时候,切片应该要扩容到 10,然后追加到数字 11 的时候,切片应该扩容到 20,可实际真的是这样吗?

xdm 可以将上述 demo 贴到自己环境试试,得到的结果仍然会是切片的容量 cap 最终是 12,并不是 20

那么这一切都是为什么呢?我们来查看源码一探究竟

源码赏析

查看公共库中 runtime/slice.gogrowslice 函数就可以解开我们的疑惑

可以看出在我们使用 append 对切片追加元素的时候,实际上会调用到 growslice 函数, growslice 中的核心逻辑我们就可以理解为计算基本的 newcap 和进行字节对齐

  1. 进行基本的新切片容量计算
// 省略部分
newcap := old.cap
doublecap := newcap + newcap
if cap > doublecap {newcap = cap
} else {if old.cap < 1024 {newcap = doublecap} else {// Check 0 < newcap to detect overflow// and prevent an infinite loop.for 0 < newcap && newcap < cap {newcap += newcap / 4}// Set newcap to the requested cap when// the newcap calculation overflowed.if newcap <= 0 {newcap = cap}}
}
// 省略部分

此处逻辑可以知道

  • 如果当前传入的 cap 是比原有切片 cap 的 2 倍还要大,那么就会按照当前传入的 cap 来作为新切片的容量
  • 否则去校验原有切片的容量是否小于 1024

    • 若小于 1024 ,则按照原有的切片容量的 2 倍进行扩容
    • 若大于等于 1024 ,那么就按照原有切片的 1.25 倍继续扩容

然后是否看到这里就就结束了呢?就下定论来呢?并不,我们切莫断章取义,需要看全整个流程

  1. 进行基本的字节对齐

growslice 函数 计算出基本的 newcap 之后,还需要按照类型进行基本的字节对齐,此处字节对齐之后主要是 roundupsize 的函数实现,顺便将其涉及到的常量放到一起给大家展示一波

const (_MaxSmallSize = 32768smallSizeDiv = 8smallSizeMax = 1024largeSizeDiv = 128_NumSizeClasses = 68_PageShift = 13
)
func roundupsize(size uintptr) uintptr {if size < _MaxSmallSize {if size <= smallSizeMax-8 {return uintptr(class_to_size[size_to_class8[divRoundUp(size, smallSizeDiv)]])} else {return uintptr(class_to_size[size_to_class128[divRoundUp(size-smallSizeMax, largeSizeDiv)]])}}if size+ _PageSize < size {return size}return alignUp(size, _PageSize)
}func divRoundUp(n, a uintptr) uintptr {// a is generally a power of two. This will get inlined and// the compiler will optimize the division.return (n + a - 1) / a
}
var size_to_class8 = [smallSizeMax/smallSizeDiv + 1]uint8{0, 1, 2, 3, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, ...}

光看这个函数,没啥感觉,函数逻辑比较简单,就是基本的计算和索引,那么我们讲上述的案例2带入,来计算一下

此处很明确,当前旧的切片的 cap 为 5

也就是 growslice 函数 中 old.cap 为 5,传入的 cap 为 11,因此 cap > 2*old.cap

因此 newcap 此处等于 11

开始计算字节对齐之后的结果

  • roundupsize(uintptr(newcap) * sys.PtrSize) ,其中 newcap = 11,sys.PtrSize = 8,则 roundupsize 参数传入 88 ,此环境指针占用 8 字节
  • 按照如下逻辑进行计算

    • divRoundUp(88, 8) = 11
    • size_to_class8[11] = 8
    • class_to_size[8] = 96

此处环境我们的 int 类型是占用 8 个字节,因此最终的 newcap = 96/8 = 12

经过上述源码的处理,最终我们就可以正常的得到最终切片容量被扩容到 12 ,xdm 可以去看实际的源码

小结

使用 append 进行切片扩容的时候,先会按照基本的逻辑来计算 newcap 的大小

  • 如果当前传入的cap是比原有切片cap的2倍还要大,那么就会按照当前传入的cap来作为新切片的容量,否则去校验原有切片的容量是否小于 1024

  • 若小于1024,则按照原有的切片容量的2倍进行扩容

  • 若大于等于 1024,那么就按照原有切片的 1.25 倍继续扩容
    最终再进行字节对齐

那么实际上,最终的切片容量一般是会等于或者大于原有的 2倍 或者是 1.25 倍的

我们一般使用切片的时候可以如何避免频繁的扩容?

一般在使用切片的时候,尽量避免频繁的去扩容,我们可以对已知数据量的数据,进行一次性去分配切片的容量

例如,数据量有 1000 个,那么我们就可以使用 make 的方式来进行初始化

sli := make([]int, 0, 1000)

本次就是这样,如果对源码还挺感兴趣的话,xdm 可以去实际查看一下源码哦,希望对你有帮助

感谢阅读,欢迎交流,点个赞,关注一波 再走吧

欢迎点赞,关注,收藏

朋友们,你的支持和鼓励,是我坚持分享,提高质量的动力

技术是开放的,我们的心态,更应是开放的。拥抱变化,向阳而生,努力向前行。

我是阿兵云原生,欢迎点赞关注收藏,下次见~

文中提到的技术点,感兴趣的可以查看这些文章:

  • 你以为传切片就是传引用了吗?
  • 【切片】基础不扎实引发的问题
  • Go 语言中 panic 和 recover 搭配使用
  • Go 语言中的反射
  • 你真的知道 GO 中 nil 代表什么吗?
    可以进入地址进行体验和学习:https://xxetb.xet.tech/s/3lucCI

http://www.ppmy.cn/news/1145384.html

相关文章

GO脚本-模拟鼠标键盘

01GetCoordinate 获取坐标 package mainimport ("github.com/go-vgo/robotgo" )func main() {// 获取当前鼠标所在的位置x, y : robotgo.GetMousePos()println(x&#xff1a;, x, y&#xff1a;, y)}02GetColor 获取坐标颜色 package mainimport ("fmt&quo…

uniapp获取公钥、MD5,‘keytool‘ 不是内部或外部命令,也不是可运行的程序 或批处理文件。

获取MD5、SHA1、SHA256指纹信息 通过命令的形式获取 winr调出黑窗口cd到证书所在目录输入keytool -list -v -keystore test.keystore,其中 test.keystore为你的证书名称加文件后缀按照提示输入你的证书密码&#xff0c;就可以查看证书的信息 通过uniapp云端查看(证书是在DClou…

js文字逐个显示

定时器每隔一段时间&#xff0c;替换文本内容&#xff0c;&#xff0c;substring 截取更多的字符串显示 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>Title</title> </head> <body…

springboot项目静态资源映射

1. springboot项目静态资源映射 import org.springframework.boot.web.client.RestTemplateBuilder; import org.springframework.context.annotation.Bean; import

Maven 自动化构建

自动化构建定义了这样一种场景: 在一个项目成功构建完成后&#xff0c;其相关的依赖工程即开始构建&#xff0c;这样可以保证其依赖项目的稳定。 比如一个团队正在开发一个项目 bus-core-api&#xff0c; 并且有其他两个项目 app-web-ui 和 app-desktop-ui 依赖于这个项目。 …

5款日常使用电脑中会用到的小工具

​ 在日常使用电脑时&#xff0c;我们需要各种软件来完成任务。以下是几款小巧但功能齐全的软件推荐。 1.系统优化——Dism ​ Dism是一款基于Dism的系统优化工具&#xff0c;它可以帮助你清理系统垃圾&#xff0c;修复系统错误&#xff0c;管理驱动器和启动项&#xff0c;备…

EM@函数奇偶性性质@函数四则运算和复合运算后的奇偶性判断

文章目录 abstract奇函数和偶函数 函数奇偶性性质函数记号声明 四则运算性质和差乘积商 复合性质奇函数复合偶函数偶函数复合奇函数奇函数复合奇函数偶函数复合偶函数 奇偶性小结&#x1f388;倍乘非零常数不改变奇偶性 奇函数和偶函数表示定义域对称函数 abstract 函数奇偶性…

室内场景数据集分享

ScanNet: A High-Fidelity Dataset of 3D Indoor Scenes ScanNet是一个大规模数据集&#xff0c;将高质量和大众级别的室内场景的几何结构和颜色信息相结合。每个场景都使用高端激光扫描仪以亚毫米级分辨率进行扫描&#xff0c;同时还配备了一台数码单反相机拍摄的3300万像素图…