基于生物地理学优化的BP神经网络(分类应用) - 附代码

news/2025/2/13 5:08:06/

基于生物地理学优化的BP神经网络(分类应用) - 附代码

文章目录

  • 基于生物地理学优化的BP神经网络(分类应用) - 附代码
    • 1.鸢尾花iris数据介绍
    • 2.数据集整理
    • 3.生物地理学优化BP神经网络
      • 3.1 BP神经网络参数设置
      • 3.2 生物地理学算法应用
    • 4.测试结果:
    • 5.Matlab代码

摘要:本文主要介绍如何用生物地理学算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。

1.鸢尾花iris数据介绍

本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:

特征1特征2特征3类别
单组iris数据5.32.11.21

3种类别用1,2,3表示。

2.数据集整理

iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:

训练集(组)测试集(组)总数据(组)
10545150

类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。

当进行数据训练对所有输入特征数据均进行归一化处理。

3.生物地理学优化BP神经网络

3.1 BP神经网络参数设置

通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:

神经网络结构

图1.神经网络结构

神经网络参数如下:

%创建神经网络
inputnum = 4;     %inputnum  输入层节点数 4维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 3;     %outputnum  隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

3.2 生物地理学算法应用

生物地理学算法原理请参考:https://blog.csdn.net/u011835903/article/details/108665883

生物地理学算法的参数设置为:

popsize = 10;%种群数量Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;

第二层权值数量为:3;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)
其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从生物地理学算法的收敛曲线可以看到,整体误差是不断下降的,说明生物地理学算法起到了优化的作用:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.Matlab代码


http://www.ppmy.cn/news/1139909.html

相关文章

Java ES 滚动查询

滚动查询(Scroll Query)是 Elasticsearch 提供的一种机制,用于处理大量数据的查询。它允许你在多个请求之间保持“游标”,以便在后续请求中获取更多的结果。 以下是滚动查询的基本工作原理: 1 初始查询: 客户端发送一…

MATLAB算法实战应用案例精讲-【优化算法】霸王龙优化算法(TROA)(附MATLAB代码实现)

前言 霸王龙优化算法(Tyrannosaurus optimization,TROA)由Venkata Satya Durga Manohar Sahu等人于2023年提出,该算法模拟霸王龙的狩猎行为,具有搜索速度快等优势。 霸王龙属于暴龙超科的暴龙属,是该属的唯一一种。1905年,美国古生物学家、美国艺术与科学院院士亨利奥…

HTTP/2和HTTP/3简介(上)(下)【中科大-郑烇老师】

文章目录 我的总结:HTTP 1.0HTTP 1.0 支持 多个并行连接HTTP 1.1 持久连接(非流水线和流水线) HTTP/2HTTP /3HTTP的演化 from : https://www.bilibili.com/video/BV1R34y1G76h/?spm_id_from333.788&vd_source21cce77bb69d40a…

Rust Http 性能测试框架/工具

在Rust中,有几个常用的性能测试框架和工具可用于对HTTP性能进行测试。以下是其中一些: 1、Criterion:Criterion是一个通用的性能测试框架,可以用于测试各种类型的代码性能,包括HTTP性能。你可以使用Criterion来编写和运…

自定义Python装饰器

前言 装饰器(Decorators)是Python中一种强大而灵活的功能,用于修改或增强函数或类的行为。装饰器本质上是一个函数,它接受另一个函数或类作为参数,并返回一个新的函数或类。它们通常用于在不修改原始代码的情况下添加…

【GIT版本控制】--常见问题与解决方案

一、修复损坏的仓库 修复损坏的Git仓库可能是面临的一种问题,这通常是由于文件损坏、存储介质问题或不正确的操作等原因引起的。以下是一些修复损坏的Git仓库的常见问题和解决方案: 常见问题: 无法执行Git命令:当尝试运行Git命令…

掌握 BERT:自然语言处理 (NLP) 从初级到高级的综合指南(1)

简介 BERT(来自 Transformers 的双向编码器表示)是 Google 开发的革命性自然语言处理 (NLP) 模型。它改变了语言理解任务的格局,使机器能够理解语言的上下文和细微差别。在本文[1]中,我们将带您踏上从 BERT 基础知识到高级概念的旅…

学习笔记|ADC|NTC原理|测温程序|STC32G单片机视频开发教程(冲哥)|第十九集:ADC应用之NTC

文章目录 1.NTC的原理开发板上的NTC 2.NTC的测温程序编写3.实战小练总结课后练习 1.NTC的原理 NTC(Negative Temperature Coefficient)是指随温度上升电阻呈指数关系减小、具有负温度系数的热敏电阻现象和材料。该材料是利用锰、铜、硅、钴、铁、镍、锌…