基于树种优化的BP神经网络(分类应用) - 附代码

news/2025/3/28 13:59:31/

基于树种优化的BP神经网络(分类应用) - 附代码

文章目录

  • 基于树种优化的BP神经网络(分类应用) - 附代码
    • 1.鸢尾花iris数据介绍
    • 2.数据集整理
    • 3.树种优化BP神经网络
      • 3.1 BP神经网络参数设置
      • 3.2 树种算法应用
    • 4.测试结果:
    • 5.Matlab代码

摘要:本文主要介绍如何用树种算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。

1.鸢尾花iris数据介绍

本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:

特征1特征2特征3类别
单组iris数据5.32.11.21

3种类别用1,2,3表示。

2.数据集整理

iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:

训练集(组)测试集(组)总数据(组)
10545150

类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。

当进行数据训练对所有输入特征数据均进行归一化处理。

3.树种优化BP神经网络

3.1 BP神经网络参数设置

通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:

神经网络结构

图1.神经网络结构

神经网络参数如下:

%创建神经网络
inputnum = 4;     %inputnum  输入层节点数 4维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 3;     %outputnum  隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

3.2 树种算法应用

树种算法原理请参考:https://blog.csdn.net/u011835903/article/details/108668256

树种算法的参数设置为:

popsize = 10;%种群数量Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;

第二层权值数量为:3;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)
其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从树种算法的收敛曲线可以看到,整体误差是不断下降的,说明树种算法起到了优化的作用:
在这里插入图片描述
在这里插入图片描述

5.Matlab代码


http://www.ppmy.cn/news/1139057.html

相关文章

全面解析HTTP协议

当谈到网络通信和Web开发时,HTTP(Hypertext Transfer Protocol)是一个非常重要的协议,它是用于在Web浏览器和服务器之间传输数据的基础协议。 什么是HTTP协议? HTTP是一种应用层协议,用于在客户端和服务器…

【Jmeter】二次开发

背景: JMeter 是一个功能强大的性能测试工具,但它可能无法满足特定项目或组织的特定需求。通过进行二次开发,可以定制 JMeter,使其适应具体项目的需求。例如,可能需要添加自定义的 测试元件、报告生成器或结果分析器等…

【面试题精讲】深拷贝和浅拷贝区别了解吗?什么是引用拷贝?

“ 有的时候博客内容会有变动,首发博客是最新的,其他博客地址可能会未同步,认准https://blog.zysicyj.top ” 首发博客地址[1] 面试题手册[2] 系列文章地址[3] 深拷贝和浅拷贝的区别: 深拷贝(Deep Copy)和浅拷贝&#…

offer突击训练营,给你一个offer的保障,求职跳槽的看过来!

大家好,我是枫哥,🌟阿里云技术专家、📝资深面试官、🌹Java跳蚤网课堂创始人。拥有多年一线研发经验,曾就职过科大讯飞、美团网、平安等公司。 目前组建的团队,专注Java技术分享&#xff0c…

iMazing 2.17.10官方中文版含2023最新激活许可证码

iMazing 2.17.10官方中文版是一款iOS设备管理软件,该软件支持对基于iOS系统的设备进行数据传输与备份,用户可以将包括:照片、音乐、铃声、视频、电子书及通讯录等在内的众多信息在Windows/Mac电脑中传输/备份/管理。 iMazing 2.17.10官方中文…

Linux 系统为何产生大量的 core 文件?

Author:rab 目录 一、问题分析二、解决方案扩展 一、问题分析 上一篇刚讲到《Docker 配置基础优化》,这里再补充一下。就在中秋国庆这段小长假里,接收到了线上服务器磁盘告警通知,线上服务器架构是一个 Docker Swarm 集群&#x…

支持向量机SVM:从数学原理到实际应用

目录 一、引言背景SVM算法的重要性 二、SVM基础线性分类器简介什么是支持向量?超平面和决策边界SVM的目标函数 三、数学背景和优化拉格朗日乘子法(Lagrange Multipliers)KKT条件核技巧(Kernel Trick)双重问题和主问题&…

【STM32 LVGL基础教程】初识LVGL

文章目录 前言一、什么是LVGL?二、LVGL的诞生历程三、LVGL的用途四、模拟器使用LVGL4.1 下载codeblocks并运行模拟器lvgl4.2 更改lvgl设置更改帧数更改颜色深度 五、STM32使用LVGL总结 前言 嵌入式系统中的图形用户界面(GUI)已经成为现代设备…