pytorch第一天(tensor数据和csv数据的预处理)lm老师版

news/2025/2/21 4:41:48/

tensor数据:

import torch
import numpyx = torch.arange(12)
print(x)
print(x.shape)
print(x.numel())X = x.reshape(3, 4)
print(X)zeros = torch.zeros((2, 3, 4))
print(zeros)ones = torch.ones((2,3,4))
print(ones)randon = torch.randn(3,4)
print(randon)a = torch.tensor([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
print(a)exp = torch.exp(a)
print(exp)X = torch.arange(12, dtype=torch.float32).reshape((3, 4))
print(X)Y = torch.tensor([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
print(Y)print(torch.cat((X, Y), dim=0))#第一个括号 从外往里数第一个
print(torch.cat((X, Y), dim=1))#第二个括号 从外往里数第二个print(X == Y)#这也是个张量tosum = torch.tensor([1.0,2,3,4])
print(tosum.sum())#加起来也是tensor
print(tosum.sum().item())#这样就是取里面的数 就是一个数了
print(type(tosum.sum().item()))#打印一下类型 是float的类型a1 = torch.arange(3).reshape(3,1)
b1 = torch.arange(2).reshape(1,2)
print(a1+b1)#相加的时候 会自己填充相同的 boardcasting mechanismprint(X[-1])
print(X[1:3])X[1, 2] = 9 #修改(1,2)为9
print(X[1])#打印出那一行X[0:2] = 12 #这样的效果和X[0:2,:]=12是一样的 都是修改前两行为12
print(X)#id相当于地址一样的东西
#直接对Y操作改变了地址 增加了内存
before = id(Y)
Y = Y + X
print(id(Y) == before)
#对其元素修改操作 不增加内存 地址一样
Z = torch.zeros_like(Y)
print('id(Z):', id(Z))
Z[:] = X + Y
print('id(Z):', id(Z))#或者用+=连续操作 地址也不会变
before = id(X)
X += Y
print(id(X) == before)A = X.numpy()
print(A)
print("A现在的类型是:{}".format(type(A)))B = torch.tensor(A)
print(B)
print("B现在的类型是:{}".format(type(B)))

运行结果自己对照学习了:

F:\python3\python.exe C:\study\project_1\main.py 
tensor([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])
torch.Size([12])
12
tensor([[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11]])
tensor([[[0., 0., 0., 0.],[0., 0., 0., 0.],[0., 0., 0., 0.]],[[0., 0., 0., 0.],[0., 0., 0., 0.],[0., 0., 0., 0.]]])
tensor([[[1., 1., 1., 1.],[1., 1., 1., 1.],[1., 1., 1., 1.]],[[1., 1., 1., 1.],[1., 1., 1., 1.],[1., 1., 1., 1.]]])
tensor([[-0.8680,  1.4825, -0.1070, -1.9015],[-0.7380, -0.3838, -0.2670, -0.2649],[ 0.9945, -1.5293,  0.0398,  0.1669]])
tensor([[2, 1, 4, 3],[1, 2, 3, 4],[4, 3, 2, 1]])
tensor([[ 7.3891,  2.7183, 54.5981, 20.0855],[ 2.7183,  7.3891, 20.0855, 54.5981],[54.5981, 20.0855,  7.3891,  2.7183]])
tensor([[ 0.,  1.,  2.,  3.],[ 4.,  5.,  6.,  7.],[ 8.,  9., 10., 11.]])
tensor([[2., 1., 4., 3.],[1., 2., 3., 4.],[4., 3., 2., 1.]])
tensor([[ 0.,  1.,  2.,  3.],[ 4.,  5.,  6.,  7.],[ 8.,  9., 10., 11.],[ 2.,  1.,  4.,  3.],[ 1.,  2.,  3.,  4.],[ 4.,  3.,  2.,  1.]])
tensor([[ 0.,  1.,  2.,  3.,  2.,  1.,  4.,  3.],[ 4.,  5.,  6.,  7.,  1.,  2.,  3.,  4.],[ 8.,  9., 10., 11.,  4.,  3.,  2.,  1.]])
tensor([[False,  True, False,  True],[False, False, False, False],[False, False, False, False]])
tensor(10.)
10.0
<class 'float'>
tensor([[0, 1],[1, 2],[2, 3]])
tensor([ 8.,  9., 10., 11.])
tensor([[ 4.,  5.,  6.,  7.],[ 8.,  9., 10., 11.]])
tensor([4., 5., 9., 7.])
tensor([[12., 12., 12., 12.],[12., 12., 12., 12.],[ 8.,  9., 10., 11.]])
False
id(Z): 1801869019800
id(Z): 1801869019800
True
[[26. 25. 28. 27.][25. 26. 27. 28.][20. 21. 22. 23.]]
A现在的类型是:<class 'numpy.ndarray'>
tensor([[26., 25., 28., 27.],[25., 26., 27., 28.],[20., 21., 22., 23.]])
B现在的类型是:<class 'torch.Tensor'>进程已结束,退出代码0

csv一般的数据预处理:

import os
import pandas as pd
import torch#创造文件夹 和excel csv文件
os.makedirs(os.path.join('..', 'data'), exist_ok=True)
data_file = os.path.join('..', 'data', 'house_tiny.csv')#因为没有 所有会自己创建一个#打开文件 用写的方式打开
with open(data_file, 'w') as f:f.write('NumRooms,Alley,Price\n')f.write('NA,Pave,127500\n')f.write('2,NA,106000\n')f.write('4,NA,178100\n')f.write('NA,NA,140000\n')#打开csv文件
data = pd.read_csv(data_file)
print(data) # 0,1,2,3会从第二行开始 因为第一行一般是标题和标签inputs, outputs = data.iloc[:, 0:2], data.iloc[:, 2]#裁剪0,1行 第2行舍去给input
print(inputs)
print(outputs)#name就会在下面inputs = inputs.fillna(inputs.mean())#把string的类型变成其他的均值
print(inputs)inputs = pd.get_dummies(inputs, dummy_na=True)#alley里面全是英文 应该把其编码 这就是编码的方式 是1就会为1
print(inputs)#都是数字后 就开始转换成tensor类型了
X, y = torch.tensor(inputs.values), torch.tensor(outputs.values)
print(X)
print(y)

运行结果:

F:\python3\python.exe C:\study\project_1\data_preprocess.py NumRooms Alley   Price
0       NaN  Pave  127500
1       2.0   NaN  106000
2       4.0   NaN  178100
3       NaN   NaN  140000NumRooms Alley
0       NaN  Pave
1       2.0   NaN
2       4.0   NaN
3       NaN   NaN
0    127500
1    106000
2    178100
3    140000
Name: Price, dtype: int64NumRooms Alley
0       3.0  Pave
1       2.0   NaN
2       4.0   NaN
3       3.0   NaNNumRooms  Alley_Pave  Alley_nan
0       3.0           1          0
1       2.0           0          1
2       4.0           0          1
3       3.0           0          1
tensor([[3., 1., 0.],[2., 0., 1.],[4., 0., 1.],[3., 0., 1.]], dtype=torch.float64)
tensor([127500, 106000, 178100, 140000])进程已结束,退出代码0

第一行代码 创造文件夹的操作和csv操作结果:

他是跑到上一个级创建的dir

ok 结束


http://www.ppmy.cn/news/1131577.html

相关文章

Scala第九章节

Scala第九章节 scala总目录 章节目标 理解包的相关内容掌握样例类, 样例对象的使用掌握计算器案例 1. 包 实际开发中, 我们肯定会遇到同名的类, 例如: 两个Person类. 那在不改变类名的情况下, 如何区分它们呢? 这就要使用到包(package)了. 1.1 简介 包就是文件夹, 用关…

Linux系统编程系列之进程间通信-消息队列

一、什么是消息队列 消息队列是system-V三种IPC对象之一&#xff0c;是进程间通信的一种方式。 二、消息队列的特性 允许发送的数据携带类型&#xff08;指定发送给谁&#xff09;&#xff0c;具有相同类型的数据在消息队列内部排队&#xff0c;读取的时候也要指定类型&#x…

步进电机驱动时如何计算90°相位差对应的CCR

对于步进电机的两路驱动PWM脉冲&#xff0c;通常需要保持它们的相位差在90以确保电机正常运转。在这种情况下&#xff0c;相位差通常是一个固定值&#xff0c;并且可以通过设置定时器的比较寄存器&#xff08;CCR&#xff09;来实现。 以下是计算CCR值的一般步骤&#xff1a; …

[AIGC] 快速掌握Netty,打造高性能IM服务器!

前言&#xff1a;Netty 是一个非常优秀的网络应用程序框架&#xff0c;支持高并发、高性能的网络通信&#xff0c;适用于开发各种服务器程序&#xff0c;如即时通讯、游戏、物联网等。使用 Netty 可以大大提升服务器程序的性能和可靠性。本文将介绍 Netty 的基本原理和使用方法…

第 114 场 LeetCode 双周赛题解

A 收集元素的最少操作次数 模拟: 反序遍历数组&#xff0c;用一个集合存当前遍历过的不超过 k k k 的正数 class Solution { public:int minOperations(vector<int> &nums, int k) {unordered_set<int> vis;int n nums.size();int i n - 1;for (;; i--) {if…

设计模式之抽象工厂模式--创建一系列相关对象的艺术(简单工厂、工厂方法、到抽象工厂的进化过程,类图NS图)

目录 概述概念适用场景结构类图 衍化过程业务需求基本的数据访问程序工厂方法实现数据访问程序抽象工厂实现数据访问程序简单工厂改进抽象工厂使用反射抽象工厂反射配置文件衍化过程总结 常见问题总结 概述 概念 抽象工厂模式是一种创建型设计模式&#xff0c;它提供了一种将相…

GD32F10x的输出模式

1. 单片机型号的识别。 2. GPIO的输出模式。 1. 开漏模式 2.推挽模式 3.复用开漏模式 4.复用推挽模式。 开漏模式&#xff1a;&#xff08;写入位设置&#xff0c;输出数据寄存器来控制MOS&#xff09; 只有N-MOS管导通。PMOS不导通。 当N-MOS的栅极为0&#xff0c;N-MOS管…

Flutter笔记:关于应用程序中提交图片作为头像

Flutter笔记 关于应用程序中提交图片作为头像 作者&#xff1a;李俊才 &#xff08;jcLee95&#xff09;&#xff1a;https://blog.csdn.net/qq_28550263 邮箱 &#xff1a;291148484163.com 本文地址&#xff1a;https://blog.csdn.net/qq_28550263/article/details/133418554…