图像处理与计算机视觉--第五章-图像分割-霍夫变换

news/2025/3/15 5:16:50/

文章目录

      • 1.霍夫变换(Hough Transform)原理介绍
      • 2.霍夫变换(Hough Transform)算法流程
      • 3.霍夫变换(Hough Transform)算法代码
      • 4.霍夫变换(Hough Transform)算法效果

1.霍夫变换(Hough Transform)原理介绍

 Hough Transform是一种常用的计算机视觉图形检验方法,霍夫变换一般用于检验直线或者圆。

 霍夫变换的原理具体如下所示:
 假设图像中存在一条直线,表达式如下所示:
y = k x + b y=kx+b y=kx+b
 假设我们任意指定一个点 ( x 0 , y 0 ) (x_{0},y_{0}) (x0,y0),则对于任意穿过该点的直线,一定有如下公式成立:
b = − k x 0 + y 0 b=-kx_{0}+y_{0} b=kx0+y0
 此时我将以x,y为轴的图像变为以b,k为轴的图像,此时该直线也能够进行变化,并且如上推导可知,对应的图像也是一条直线,如图所示:
在这里插入图片描述
 进一步的,我们再从直线上取一点 ( x 1 , y 1 ) (x_{1},y_{1}) (x1,y1),则必有如下公式:
b = − k x 1 + y 1 b=-kx_{1}+y_{1} b=kx1+y1
 在图像上绘制会这样的函数,我们可知,两条直线相交于一点 ( k ∗ , b ∗ ) (k^{*},b^{*}) (k,b),而这个点就是x,y轴上的 ( x 1 , y 1 ) (x_{1},y_{1}) (x1,y1) ( x 0 , y 0 ) (x_{0},y_{0}) (x0,y0)两点所确定的直线。
![在这里插入图片描述](https://img-blog.csdnimg.cn/905cb7cad8ce40eaa338bde0626db96d.png
 但是我们在实际的直线检测中,我们不会用到上述的坐标系方法,上述的方法只是提供一个求解的思路,我们将使用极坐标方程来完成上述方法的求解,对于上述的直线,极坐标方程可以表示为:
ρ = x c o s θ + s i n θ \rho=xcos\theta+sin\theta ρ=xcosθ+sinθ
 其中, θ \theta θ为直线的法线向量与x轴正向的夹角,而 ρ \rho ρ为坐标系原点至直线的垂直距离,如下图所示:
在这里插入图片描述
 如下所示,我们可以发现,这条直线在极坐标下只有一个( ρ \rho ρ, θ \theta θ) 与之对应,改变一个参数大小变换到空域上的直线即会改变。而空域这条直线上的所有点都可以在极坐标为( ρ \rho ρ, θ \theta θ) 所表示的直线上 (如下图所示)
在这里插入图片描述
 空域直线上的一个点在极坐标系下具体对应多少个极坐标对,取决于 θ \theta θ的步长 ,如果设步长为 β \beta β,则极坐标对n的表示如下所示:
n = 360 β n=\frac{360}{\beta} n=β360
 对应的图片如下所示:
在这里插入图片描述
 接下来我们假设空域上的三个点对应的极坐标曲线如下图的(a)所示,极坐标曲线同时经过一个点表示空域下有一条直线经过这三个点,只要寻找交点最多的点,在空域内就是要寻找的直线。
在这里插入图片描述

2.霍夫变换(Hough Transform)算法流程

·Hough变换直线检测的步骤如下:
1.0的取值范围为[0,360],单位为度根据检测精度要求,采取适当的步长对角度和长度的取值范围进行离散化,形成0-p平面上的离散网格。
2.将每一个离散网格视为一个投票累加器,初始时全部清03.遍历图像的所有像素,对于每个像素计算离散值0i和p=xcos0+ysin0.
4.对在参数空间中将对应的累加器中的值加1,从而完成求出相应的离散化值p,对于每个(p,0)该像素点的投票的投票之后,在离散化的参数空间中找出所累积的投票值
5.访问完所有的图像像素并完成所有,点这些点所对应的参数即为检测得到的直线的参数大于某给定闽值T的局部极大值点,

3.霍夫变换(Hough Transform)算法代码

import numpy as np
import cv2
from PIL import Image,ImageEnhance 
import matplotlib.pyplot as plt
"""
hough变换是一种常用的计算机视觉图形检验方法,霍夫变换一般用于检验直线或者圆。"""
img = Image.open(r"C:\Users\Zeng Zhong Yan\Desktop\py.vs\python学习\test.webp")
#增强图像效果
img = ImageEnhance.Contrast(img).enhance(3)
img.show()
#处理成矩阵,便于后续处理
img = np.array(img)
#灰度处理
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#cv2.THRESH_OTSU具有双峰值,显示效果更好.
"""
cv2.THRESH_OTSU使用最小二乘法处理像素点。一般情况下,cv2.THRESH_OTSU适合双峰图。
cv2.THRESH_TRIANGLE使用三角算法处理像素点。一般情况下,cv2.THRESH_TRIANGLE适合单峰图。
"""
ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_OTSU)
#canny边缘检验算法处理
result = cv2.Canny(thresh, ret-30, ret+30, apertureSize=3)#霍夫变换检测直线
lines = cv2.HoughLinesP(result, 1, 1 * np.pi / 180, 10, minLineLength=10, maxLineGap=5)
# 画出检测的线段
for line in lines:for x1, y1, x2, y2 in line:cv2.line(img, (x1, y1), (x2, y2), (255, 0, 0),2)
img = Image.fromarray(img, 'RGB')
img.show()

4.霍夫变换(Hough Transform)算法效果

1.原先的图片如下所示:
在这里插入图片描述
2.霍夫变换后的检测直线的效果
在这里插入图片描述


http://www.ppmy.cn/news/1129273.html

相关文章

mysql数据的备份和恢复

听歌 沛公 第一个欧,听的是沛公,唱的岂不是你我 文章目录 备份全量备份增量备份差异备份 mysql备份备份所有数据库备份制定的数据库备份多张表备份表结构备份表数据 恢复恢复所有数据 对应上面的第一个和第二个恢复表恢复表结构恢复表数据 备份 全量备份…

MySql的索引与算法-B+树索引

作者:逍遥Sean 简介:一个主修Java的Web网站\游戏服务器后端开发者 主页:https://blog.csdn.net/Ureliable 觉得博主文章不错的话,可以三连支持一下~ 如有需要我的支持,请私信或评论留言! 前言 索引在实际应…

springboot导入excel(POI)

POI官方文档 引入依赖 <!--POI--><dependency><groupId>org.apache.poi</groupId><artifactId>poi</artifactId><version>4.1.2</version></dependency><dependency><groupId>org.apache.poi</groupId&…

P2466 [SDOI2008] Sue 的小球(区间dp)

P2466 [SDOI2008] Sue 的小球&#xff08;区间dp&#xff09; 链接&#xff1a;P2466 [SDOI2008] Sue 的小球 很有意思的一道题&#xff0c;想各种方法都无从下手&#xff0c;看了洛谷题解瞬间懂了。 题意 有 n n n 个物品&#xff0c;每个物品的位置在 x i x_i xi​&…

【每日一题Day340】LC2251花期内花的数目 | 差分+哈希表+排序 排序+二分查找

花期内花的数目【LC2251】 给你一个下标从 0 开始的二维整数数组 flowers &#xff0c;其中 flowers[i] [starti, endi] 表示第 i 朵花的 花期 从 starti 到 endi &#xff08;都 包含&#xff09;。同时给你一个下标从 0 开始大小为 n 的整数数组 people &#xff0c;people[…

React useRequest解读

源码结构&#xff1a; 可以看到虽然是一个hooks&#xff08;具有一定功能且具备状态的单一函数&#xff09; 但是各种文件功能分得也是很细的&#xff0c;方便抽离和复用 useRequest.ts 抽离的原则还是单一功能原则 可以看出 真正的hooks实现是在Implement里 对于类型type的引…

C#并发编程的实现方式

一、多线程&#xff1a;是一种并发编程技术&#xff0c;它允许一个应用程序同时执行多个线程。每个线程都有自己的指令集和堆栈&#xff0c;可以在不同的CPU核心上并行运行&#xff0c;或者在一个CPU核心上通过时间片轮转的方式交替运行。多线程的主要优点是可以利用多核处理器…

Python数据和Json数据的相互转换

什么是JSON&#xff1f; JSON是一种轻量级的数据交互格式。可以按照JSON指定的格式去组织和封装数据 JSON本质上是一个带有特定格式的字符串 主要功能:JSON就是一种在各个编程语言中流通的数据格式&#xff0c;负责不同编程语言中的数据传递和交互 Python数据和Json数据的相互…