利用maskrcnn来实现目标检测与追踪

news/2024/11/30 15:33:37/

首先下载源代码仓库,链接地址如下:

maskrcnn

能够实现的效果如图所示:

该存储库包括:

  • 基于FPN和ResNet101构建的Mask R-CNN的源代码。
  • MS COCO 的训练代码
  • MS COCO 的预训练砝码
  • Jupyter 笔记本,用于可视化每一步的检测管道
  • 用于多 GPU 训练的并行模型类
  • 对 MS COCO 指标 (AP) 的评估
  • 在自己的数据集上进行训练的示例

下载代码仓库,进行解压后的目录如下:

可以使用下面:

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

也可以使用

python setup.py install

来安装相关的依赖包,安装完成后,还需要下载模型文件,

下载链接地址如下:

mask_rcnn_balloon.h5

测试代码如下所示:

import os
import sys
import random
import math
import numpy as np
import skimage.io
import matplotlib
import matplotlib.pyplot as plt# Root directory of the project
ROOT_DIR = os.path.abspath("../")# Import Mask RCNN
sys.path.append(ROOT_DIR)  # To find local version of the library
from mrcnn import utils
import mrcnn.model as modellib
from mrcnn import visualize
# Import COCO config
sys.path.append(os.path.join(ROOT_DIR, "samples/coco/"))  # To find local version
import coco%matplotlib inline # Directory to save logs and trained model
MODEL_DIR = os.path.join(ROOT_DIR, "logs")# Local path to trained weights file
COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5")
# Download COCO trained weights from Releases if needed
if not os.path.exists(COCO_MODEL_PATH):utils.download_trained_weights(COCO_MODEL_PATH)# Directory of images to run detection on
IMAGE_DIR = os.path.join(ROOT_DIR, "images")class InferenceConfig(coco.CocoConfig):# Set batch size to 1 since we'll be running inference on# one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPUGPU_COUNT = 1IMAGES_PER_GPU = 1config = InferenceConfig()
config.display()# Create model object in inference mode.
model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config)# Load weights trained on MS-COCO
model.load_weights(COCO_MODEL_PATH, by_name=True)# COCO Class names
# Index of the class in the list is its ID. For example, to get ID of
# the teddy bear class, use: class_names.index('teddy bear')
class_names = ['BG', 'person', 'bicycle', 'car', 'motorcycle', 'airplane','bus', 'train', 'truck', 'boat', 'traffic light','fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird','cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear','zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie','suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball','kite', 'baseball bat', 'baseball glove', 'skateboard','surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup','fork', 'knife', 'spoon', 'bowl', 'banana', 'apple','sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza','donut', 'cake', 'chair', 'couch', 'potted plant', 'bed','dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote','keyboard', 'cell phone', 'microwave', 'oven', 'toaster','sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors','teddy bear', 'hair drier', 'toothbrush']
# Load a random image from the images folder
file_names = next(os.walk(IMAGE_DIR))[2]
image = skimage.io.imread(os.path.join(IMAGE_DIR, random.choice(file_names)))# Run detection
results = model.detect([image], verbose=1)# Visualize results
r = results[0]
visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], class_names, r['scores'])


http://www.ppmy.cn/news/1129169.html

相关文章

在亚马逊云科技Amazon SageMaker上部署构建聊天机器人的开源大语言模型

开源大型语言模型(LLM)已经变得流行起来,研究人员、开发人员和组织都可以使用这些模型来促进创新和实验。这促进了开源社区开展合作,从而为LLM的开发和改进做出贡献。开源LLM提供了模型架构、训练过程和训练数据的透明度&#xff…

vlc将本地文件推流成ts实时流

推流 打开vlc ,打开 媒体----打开网络串流 选择文件选项卡,打开本地文件 点击添加,选择本地的mp3文件 选择串流 点击下拉框,选择udp,点击右边的【添加】按钮 输入媒体流输出地址,点击【下一个】 选择正确的…

flink中不同序列化器性能对比

背景 flink有多种序列化方式,包括flink内置的以及fallback到kryo的,那么他们之间有多大的性能差距呢,本文就从https://flink.apache.org/2020/04/15/flink-serialization-tuning-vol.-1-choosing-your-serializer-if-you-can/这篇文章里摘录…

【Git】配置SSH密钥实现Git操作免密

背景 在使用Git推送代码的时候,会默认需要输入密码。如果经常推送代码,那就需要经常输入密码,比较繁琐。所以Git也提供了免密登录的功能。 Git本身支持两种协议对远程Git仓库进行访问:HTTPS、SSH。两种方式有一定的区别&#xf…

【青书学堂】 2023年第二学期 JavaScript 基础编程(高起专) 作业

【青书学堂】 2023年第二学期 JavaScript 基础编程(高起专) 作业 为了方便日后复习,青书学堂成人大专试题整理。 若有未整理的课程,请私信我补充,欢迎爱学习的同学们收藏点赞关注!文章内容仅限学习使用!!&a…

系统集成|第十九章(笔记)

目录 第十九章 风险管理19.1 风险管理的概述及相关概念19.2 主要过程19.2.1 规划风险管理19.2.2 识别风险19.2.3 实施定性风险分析19.2.4 实施定量风险分析19.2.5 规划风险应对19.2.6 控制风险 上篇:第十八章、安全管理 下篇:第二十章、收尾管理 第十九…

如何在Go中编写注释

引言 几乎所有的编程语言都有一种向代码添加注释的语法,Go也不例外。注释(comment)是程序中使用人类语言解释代码如何工作或为什么要这样写的行。编译器会忽略它们,但细心的程序员不会。注释添加了宝贵的上下文,可以帮助您的合作者(以及您未…

C# Task任务详解

文章目录 前言Task返回值无参返回有参返回 async和await返回值await搭配使用Main async改造 Task进阶Task线程取消测试用例超时设置 线程暂停和继续测试用例 多任务等最快多任务全等待 结论 前言 Task是对于Thread的封装,是极其优化的设计,更加方便了我…