如何系列 如何使用OpenCV进行图像操作

news/2024/12/1 0:36:05/

文章目录

    • 简介
    • 集成
    • 代码示例
      • 加载和显示图像
      • 编辑和保存图像
      • 边缘检测
      • 图片属性
      • 图像旋转
      • 图像缩放
      • 图像拼接
      • 颜色空间转换
      • 图像模糊平滑化
      • 腐蚀和膨胀
      • 直方图均衡化
      • 图像分割
      • 模板匹配
      • 图像特征提取
      • 图像拟合
      • 图像标注
      • 轮廓检测
      • 背景减除
      • 图像混合
      • 颜色分割
      • 图像旋转裁剪
      • 在图像上写文字
      • 检测和裁剪人脸
      • 灰度化图像
      • 二值化
      • 背景去除
      • 特征点检测
    • 参考

简介

OpenCV (Open Source Computer Vision Library) 是一个计算机视觉和机器学习的开源库,其提供了丰富的图像处理和计算机视觉算法。OpenCV 最初是为 C++ 编写的,但现在也支持 Java 编程语言。

你就认为是个增强版的ps工具

以下是一些 OpenCV 的功能和能够实现的任务:

  1. 图像读取和显示:OpenCV 可以读取多种图像格式,并提供图像显示的功能。
  2. 图像处理:OpenCV 提供了各种图像处理工具,包括滤波、增强、色彩转换、几何变换等。
  3. 特征检测与描述:OpenCV 可以检测图像中的关键点,并计算用于描述这些关键点的特征向量,例如 SIFT、SURF、ORB 等。
  4. 图像匹配与识别:OpenCV 允许你使用特征匹配算法来识别或跟踪物体,也可以进行模板匹配。
  5. 物体检测:OpenCV 提供了各种物体检测器,如人脸检测、车辆检测、目标检测等。
  6. 形态学操作:用于处理二值图像,包括膨胀、腐蚀、开运算、闭运算等。
  7. 图像分割:OpenCV 支持图像分割技术,如阈值分割、边缘检测、区域生长等。
  8. 图像重映射:可以通过重映射函数将图像的像素位置重新映射到新的位置。
  9. 颜色空间转换:允许在不同颜色空间之间进行转换,如 RGB 到 HSV、灰度等。
  10. 图像拼接:用于将多幅图像拼接成全景图像,支持水平和垂直拼接。
  11. 摄像头捕捉和视频处理:OpenCV 可以从摄像头捕捉实时视频,并进行视频处理、分析和流处理。
  12. 计算机视觉算法:OpenCV 包含各种计算机视觉算法,如光流、相机标定、三维重建、立体视觉等。
  13. 机器学习集成:OpenCV 可以与机器学习库集成,如 TensorFlow 和 PyTorch,以构建深度学习模型并进行推理。
  14. 图像绘制和标注:用于在图像上绘制文本、线条、形状等,以标注图像。
  15. 背景减除:用于从图像中分离前景对象和背景。
  16. 图像相似度度量:可以计算两幅图像之间的相似度,如结构相似性指数(SSIM)等。
  17. 多视图几何:支持多视图几何算法,如立体校正、三角测量等。
  18. 人脸识别与追踪:OpenCV 提供了人脸检测、识别和追踪的功能。
  19. 深度学习集成:OpenCV 提供了深度学习模型的加载、推理和微调功能,支持多种深度学习框架。
  20. 图像处理管道和流程:可以构建复杂的图像处理管道,以进行自动化图像处理和分析。

这些只是 OpenCV 提供的一些功能和应用示例。OpenCV 在计算机视觉和图像处理领域具有广泛的应用,可用于图像编辑、机器视觉、自动驾驶、医学图像分析、安全监控、虚拟现实等多个领域。你可以根据具体项目需求,结合 OpenCV 的功能来完成各种图像处理和计算机视觉任务。

集成

1.添加Maven依赖项

<dependency><groupId>org.openpnp</groupId><artifactId>opencv</artifactId><version>4.7.0-0</version>
</dependency>

2.添加动态库

// 会从jar内复制对应的动态库到临时目录
// 并调用System.loadLibrary(org.opencv.core.Core.NATIVE_LIBRARY_NAME);
nu.pattern.OpenCV.loadShared();

代码示例

  • Mat 类表示 n 维密集数值单通道或多通道数组。 它可用于存储实值或复值向量和矩阵、灰度或彩色图像、体素体积、向量场、点云、张量、直方图。

加载和显示图像

要在 Java 中加载和显示图像,可以使用 imread 和 imshow 函数。以下是一个简单的示例代码:

import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.highgui.HighGui;
public class ImageProcessing {public static void main(String[] args) {nu.pattern.OpenCV.loadShared();// 加载图像Mat image = org.opencv.imgcodecs.Imgcodecs.imread("path/to/image.jpg");// 显示图像HighGui.imshow("Image", image);// 等待用户按下任意键关闭窗口HighGui.waitKey();}
}

编辑和保存图像

import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
public class Main {public static void main(String[] args) {// 加载 OpenCV 库nu.pattern.OpenCV.loadShared();// 读取图像Mat image = Imgcodecs.imread("images/_abc.png");// 画直线 图片,线段的第一个点,线段的第二个点,线段的颜色,线的宽度Imgproc.line(image, new Point(0, 0), new Point(image.cols(), image.rows()), new Scalar(0, 0, 255), 2);// 保存图像Imgcodecs.imwrite("images/_abc2.png", image);}
}

边缘检测

边缘检测是一种常用的图像分析技术,可以用于检测图像中的边缘和轮廓。以下是一个示例代码:

import org.opencv.core.Mat;
import org.opencv.core.Size;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
public class Test {public static void main(String[] args) {// 加载 OpenCV 库nu.pattern.OpenCV.loadShared();// 加载图像Mat image = Imgcodecs.imread("images/_abc.png");// 从彩色转换为灰度图像。这是因为边缘检测通常在灰度图像上执行,因为它更容易处理。Mat edges = new Mat();Imgproc.cvtColor(image, edges, Imgproc.COLOR_BGR2GRAY);// 对灰度图像应用了高斯模糊(Gaussian Blur)它可以帮助减少图像中的噪声,从而产生更干净的边缘。Imgproc.GaussianBlur(edges, edges, new Size(5, 5), 1.5, 1.5);// 应用边缘检测算法 输入图像、输出图像和两个阈值Imgproc.Canny(image, edges, 100, 200);// 显示边缘图像HighGui.imshow("Edges", edges);HighGui.waitKey();}
}

图片属性

import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.imgcodecs.Imgcodecs;public class Test {public static void main(String[] args) {// 加载 OpenCV 库nu.pattern.OpenCV.loadShared();// 加载图像Mat image = Imgcodecs.imread("images/_abc.png");// 获取图像的宽度和高度int width = image.width();int height = image.height();// 获取图像的通道数(BGR 图像通常为3)int numChannels = image.channels();// 获取图像的位深度(通常为8位无符号整数)int depth = image.depth();// 打印图像属性System.out.println("Image Width: " + width);System.out.println("Image Height: " + height);System.out.println("Number of Channels: " + numChannels);System.out.println("Image Depth: " + CvType.typeToString(depth));}
}
---
Image Width: 150
Image Height: 50
Number of Channels: 3
Image Depth: CV_8UC1

图像旋转

旋转图像以进行校正或调整方向。

import org.opencv.core.Mat;
import org.opencv.core.Point;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
public class Test {public static void main(String[] args) {// 加载 OpenCV 库nu.pattern.OpenCV.loadShared();// 加载图像Mat image = Imgcodecs.imread("images/_abc.png");double angle = 30; // 旋转角度Point center = new Point(image.cols() / 2, image.rows() / 2);Mat rotationMatrix = Imgproc.getRotationMatrix2D(center, angle, 1.0);Imgproc.warpAffine(image, image, rotationMatrix, image.size());// 显示图像HighGui.imshow("Image", image);// 等待用户按下任意键关闭窗口HighGui.waitKey();}
}

图像缩放

调整图像的大小。

Size newSize = new Size(newWidth, newHeight);
Imgproc.resize(image, image, newSize);

图像拼接

将多个图像水平或垂直拼接在一起。

List<Mat> imagesToConcat = new ArrayList<>();
// 添加要拼接的图像到列表中
Mat resultImage = new Mat();
Core.hconcat(imagesToConcat, resultImage); // 或者使用 Core.vconcat 进行垂直拼接

颜色空间转换

将图像从一种颜色空间转换为另一种,例如从 BGR 到 HSV。

Imgproc.cvtColor(image, image, Imgproc.COLOR_BGR2HSV);

图像模糊平滑化

图像模糊(平滑化)是一种图像处理技术,可以减少图像中的噪声或细节,使图像变得更加平滑或模糊。OpenCV 提供了多种图像模糊方法,其中最常见的是高斯模糊和均值模糊。

import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;public class GaussianBlurExample {public static void main(String[] args) {System.loadLibrary(Core.NATIVE_LIBRARY_NAME);// 读取图像String imagePath = "path/to/your/image.jpg";Mat image = Imgcodecs.imread(imagePath);if (image.empty()) {System.out.println("Could not open or find the image");return;}// 应用高斯模糊Imgproc.GaussianBlur(image, image, new org.opencv.core.Size(5, 5), 0);// blur均值模糊// medianBlur中值模糊// bilateralFilter双边模糊// 保存模糊后的图像String outputImagePath = "path/to/save/blurred_image.jpg";Imgcodecs.imwrite(outputImagePath, image);}
}

腐蚀和膨胀

膨胀被用来增加图像中边缘的大小。首先,我们定义了奇数(5,5)的核矩阵大小。然后使用内核,我们对图像执行膨胀。

腐蚀与膨胀正好相反。该算法用于减小图像中边缘的大小。首先,我们定义了奇数(5,5)的核矩阵大小。然后使用内核,我们对图像执行腐蚀。

// 膨胀
kernel = np.ones((5,5),np.uint8) ## DEFINING KERNEL OF 5x5
imgDialation = cv2.dilate(imgCanny,kernel,iterations=1) ##DIALATION
// 腐蚀
Mat kernel = Imgproc.getStructuringElement(Imgproc.MORPH_RECT, new Size(3, 3));
Imgproc.erode(binaryImage, binaryImage, kernel);

直方图均衡化

提高图像的对比度,使图像更清晰。

Imgproc.cvtColor(image, image, Imgproc.COLOR_BGR2GRAY);
Imgproc.equalizeHist(image, image);

图像分割

将图像分割成不同的区域或对象。

Mat labels = new Mat();
Mat stats = new Mat();
Mat centroids = new Mat();
Imgproc.connectedComponentsWithStats(binaryImage, labels, stats, centroids);

模板匹配

在图像中查找特定模板的位置。

Mat template = Imgcodecs.imread("path/to/template.jpg");
Mat result = new Mat();
Imgproc.matchTemplate(image, template, result, Imgproc.TM_CCOEFF_NORMED);

图像特征提取

使用特征检测器提取图像中的关键点和描述符。

MatOfKeyPoint keypoints = new MatOfKeyPoint();
FeatureDetector detector = FeatureDetector.create(FeatureDetector.SIFT);
detector.detect(image, keypoints);

图像拟合

对图像中的几何形状进行拟合,如拟合直线或圆。

MatOfPoint2f approxCurve = new MatOfPoint2f();
Imgproc.approxPolyDP(new MatOfPoint2f(contour), approxCurve, epsilon, true);

图像标注

在图像上添加文本、线条或形状,以标识或注释图像。

Scalar color = new Scalar(0, 0, 255); // 红色
Point startPoint = new Point(10, 10); // 起始点
Imgproc.putText(image, "Sample Text", startPoint, Core.FONT_HERSHEY_SIMPLEX, 0.5, color, 2);

轮廓检测

查找并绘制图像中的对象轮廓。

List<MatOfPoint> contours = new ArrayList<>();
Imgproc.findContours(binaryImage, contours, new Mat(), Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE);
Imgproc.drawContours(image, contours, -1, new Scalar(0, 255, 0), 2);

背景减除

从图像中分离前景对象和背景。

BackgroundSubtractorMOG2 bgSubtractor = Video.createBackgroundSubtractorMOG2();
Mat foregroundMask = new Mat();
bgSubtractor.apply(image, foregroundMask);

图像混合

将两个图像叠加在一起以创建混合效果。

Mat image1 = Imgcodecs.imread("path/to/image1.jpg");
Mat image2 = Imgcodecs.imread("path/to/image2.jpg");
Mat blendedImage = new Mat();
Core.addWeighted(image1, 0.7, image2, 0.3, 0, blendedImage);

颜色分割

将图像分割成不同的颜色通道。

List<Mat> channels = new ArrayList<>();
Core.split(image, channels);

图像旋转裁剪

旋转并裁剪图像以获取感兴趣的区域。

javaCopy codedouble angle = 30; // 旋转角度
Point center = new Point(image.cols() / 2, image.rows() / 2);
Mat rotationMatrix = Imgproc.getRotationMatrix2D(center, angle, 1.0);
Imgproc.warpAffine(image, image, rotationMatrix, image.size());
Rect roi = new Rect(x, y, width, height); // 定义感兴趣的区域
Mat croppedImage = new Mat(image, roi);

在图像上写文字

import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
public class WriteTextOnImage {public static void main(String[] args) {System.loadLibrary(Core.NATIVE_LIBRARY_NAME);// 读取图像String imagePath = "path/to/your/image.jpg";Mat image = Imgcodecs.imread(imagePath);if (image.empty()) {System.out.println("Could not open or find the image");return;}// 定义文本和位置String text = "Hello, OpenCV!";Point position = new Point(50, 50); // 文本的左上角位置int fontFace = Imgproc.FONT_HERSHEY_SIMPLEX;double fontScale = 1.0;Scalar color = new Scalar(0, 0, 255); // 文本颜色 (BGR格式)int thickness = 2;// 在图像上添加文本Imgproc.putText(image, text, position, fontFace, fontScale, color, thickness);// 保存带有文本的图像String outputImagePath = "path/to/save/output_image.jpg";Imgcodecs.imwrite(outputImagePath, image);}
}

检测和裁剪人脸

人脸检测在人脸识别系统中非常有用。在 OpenCV 中,我们有许多预先训练的 haar 级联分类器可用于不同的任务。以下网址可以查看 OpenCV GitHub 上的分类器列表:https://github.com/opencv/opencv/tree/master/data/haarca
scades。

我们使用 haarcascade_frontalface_default.xml 分类器来检测图像中的人脸。它将返回图像的四个坐标(w,h,x,y)。使用这些坐标,我们要在脸上画一个矩形,然后使用相同的坐标,继续裁剪人脸。最后使用 imwrite,把裁剪后的图像保存到目录中。

import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.core.Size;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import org.opencv.objdetect.CascadeClassifier;
public class DetectAndCropFace {public static void main(String[] args) {System.loadLibrary(Core.NATIVE_LIBRARY_NAME);// 加载人脸检测器String faceCascadePath = "path/to/haarcascade_frontalface_default.xml";CascadeClassifier faceCascade = new CascadeClassifier(faceCascadePath);// 读取图像String imagePath = "path/to/your/image.jpg";Mat image = Imgcodecs.imread(imagePath);if (image.empty()) {System.out.println("Could not open or find the image");return;}// 转换图像为灰度Mat grayImage = new Mat();Imgproc.cvtColor(image, grayImage, Imgproc.COLOR_BGR2GRAY);Imgproc.equalizeHist(grayImage, grayImage);// 检测人脸MatOfRect faceDetections = new MatOfRect();faceCascade.detectMultiScale(grayImage, faceDetections);// 遍历检测到的人脸并裁剪for (Rect rect : faceDetections.toArray()) {// 裁剪人脸区域Mat croppedFace = new Mat(image, rect);// 绘制矩形框以标识人脸Imgproc.rectangle(image, new Point(rect.x, rect.y), new Point(rect.x + rect.width, rect.y + rect.height), new Scalar(0, 255, 0), 2);// 保存裁剪的人脸图像String outputImagePath = "path/to/save/face_" + System.currentTimeMillis() + ".jpg";Imgcodecs.imwrite(outputImagePath, croppedFace);}// 保存带有人脸标识的图像String outputImagePath = "path/to/save/output_image.jpg";Imgcodecs.imwrite(outputImagePath, image);}
}

灰度化图像

图像灰度化是一种常见的预处理步骤,可以将彩色图像转换为灰度图像。

import org.opencv.core.Mat;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
public class Test {public static void main(String[] args) {// 加载 OpenCV 库nu.pattern.OpenCV.loadShared();// 加载彩色图像Mat colorImage = Imgcodecs.imread("images/_abc.png");// 将彩色图像转换为灰度图像Mat grayscaleImage = new Mat();Imgproc.cvtColor(colorImage, grayscaleImage, Imgproc.COLOR_BGR2GRAY);// 显示灰度图像HighGui.imshow("Grayscale Image", grayscaleImage);HighGui.waitKey();}
}

二值化

二值化是一种图像处理技术,将图像转换为只包含两个像素值的图像,通常为黑色和白色(或0和255),以便更容易进行目标检测、图像分割和其他计算机视觉任务。在 OpenCV 中,可以使用不同的阈值方法来进行二值化。

  1. 简单二值化: 简单二值化是根据一个固定的阈值将图像分为黑白两部分。

    import org.opencv.core.Core;
    import org.opencv.core.Mat;
    import org.opencv.imgcodecs.Imgcodecs;
    import org.opencv.imgproc.Imgproc;public class SimpleThresholdingExample {public static void main(String[] args) {System.loadLibrary(Core.NATIVE_LIBRARY_NAME);// 读取图像String imagePath = "path/to/your/image.jpg";Mat image = Imgcodecs.imread(imagePath);if (image.empty()) {System.out.println("Could not open or find the image");return;}// 将图像转换为灰度Mat grayImage = new Mat();Imgproc.cvtColor(image, grayImage, Imgproc.COLOR_BGR2GRAY);// 应用简单二值化Mat binaryImage = new Mat();Imgproc.threshold(grayImage, binaryImage, 128, 255, Imgproc.THRESH_BINARY);// 保存二值化后的图像String outputImagePath = "path/to/save/binary_image.jpg";Imgcodecs.imwrite(outputImagePath, binaryImage);}
    }
    
  2. 自适应二值化: 自适应二值化根据每个像素周围的局部区域自动确定阈值。

    import org.opencv.core.Core;
    import org.opencv.core.Mat;
    import org.opencv.imgcodecs.Imgcodecs;
    import org.opencv.imgproc.Imgproc;public class AdaptiveThresholdingExample {public static void main(String[] args) {System.loadLibrary(Core.NATIVE_LIBRARY_NAME);// 读取图像String imagePath = "path/to/your/image.jpg";Mat image = Imgcodecs.imread(imagePath);if (image.empty()) {System.out.println("Could not open or find the image");return;}// 将图像转换为灰度Mat grayImage = new Mat();Imgproc.cvtColor(image, grayImage, Imgproc.COLOR_BGR2GRAY);// 应用自适应二值化Mat binaryImage = new Mat();Imgproc.adaptiveThreshold(grayImage, binaryImage, 255, Imgproc.ADAPTIVE_THRESH_MEAN_C, Imgproc.THRESH_BINARY, 11, 2);// 保存二值化后的图像String outputImagePath = "path/to/save/adaptive_binary_image.jpg";Imgcodecs.imwrite(outputImagePath, binaryImage);}
    }
    

背景去除

import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.Scalar;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.video.BackgroundSubtractor;
import org.opencv.video.Video;
public class RemoveBackground {public static void main(String[] args) {System.loadLibrary(Core.NATIVE_LIBRARY_NAME);// 读取图像String imagePath = "path/to/your/image.jpg";Mat image = Imgcodecs.imread(imagePath);if (image.empty()) {System.out.println("Could not open or find the image");return;}// 创建背景减除器BackgroundSubtractor bgSubtractor = Video.createBackgroundSubtractorMOG2();// 去除背景Mat fgMask = new Mat();bgSubtractor.apply(image, fgMask);// 创建结果图像Mat resultImage = new Mat();image.copyTo(resultImage, fgMask);// 保存去除背景后的图像String outputImagePath = "path/to/save/output_image.jpg";Imgcodecs.imwrite(outputImagePath, resultImage);}
}

特征点检测

特征点检测是计算机视觉领域的一项重要任务,用于在图像中检测并描述具有独特属性的关键点,以便在不同图像之间进行匹配、跟踪或对象识别。OpenCV 提供了多种特征点检测算法,其中最常用的是 SIFT 和 ORB。

  1. SIFT 特征点检测

    import org.opencv.core.Core;
    import org.opencv.core.Mat;
    import org.opencv.core.MatOfKeyPoint;
    import org.opencv.features2d.Features2d;
    import org.opencv.features2d.SIFT;
    import org.opencv.imgcodecs.Imgcodecs;public class SiftFeatureDetection {public static void main(String[] args) {System.loadLibrary(Core.NATIVE_LIBRARY_NAME);// 读取图像String imagePath = "path/to/your/image.jpg";Mat image = Imgcodecs.imread(imagePath);if (image.empty()) {System.out.println("Could not open or find the image");return;}// 初始化 SIFT 特征检测器SIFT sift = SIFT.create();// 检测图像中的 SIFT 特征点MatOfKeyPoint keyPoints = new MatOfKeyPoint();sift.detect(image, keyPoints);// 在图像上绘制特征点Mat outputImage = new Mat();Features2d.drawKeypoints(image, keyPoints, outputImage);// 保存带有特征点的图像String outputImagePath = "path/to/save/sift_keypoints_image.jpg";Imgcodecs.imwrite(outputImagePath, outputImage);}
    }
    
  2. ORB 特征点检测

    import org.opencv.core.Core;
    import org.opencv.core.Mat;
    import org.opencv.features2d.Features2d;
    import org.opencv.features2d.ORB;
    import org.opencv.imgcodecs.Imgcodecs;public class OrbFeatureDetection {public static void main(String[] args) {System.loadLibrary(Core.NATIVE_LIBRARY_NAME);// 读取图像String imagePath = "path/to/your/image.jpg";Mat image = Imgcodecs.imread(imagePath);if (image.empty()) {System.out.println("Could not open or find the image");return;}// 初始化 ORB 特征检测器ORB orb = ORB.create();// 检测图像中的 ORB 特征点MatOfKeyPoint keyPoints = new MatOfKeyPoint();orb.detect(image, keyPoints);// 在图像上绘制特征点Mat outputImage = new Mat();Features2d.drawKeypoints(image, keyPoints, outputImage);// 保存带有特征点的图像String outputImagePath = "path/to/save/orb_keypoints_image.jpg";Imgcodecs.imwrite(outputImagePath, outputImage);}
    }
    

参考

  • https://www.opencv.org.cn/
    • https://www.opencv.org.cn/forum/forum.php?mod=viewthread&tid=33549
    • https://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/tutorials.html
  • https://www.hhai.cc/thread-3-1-1.html
  • https://gitee.com/songer/java_opencv
  • https://gitee.com/opencv_ai/opencv_tutorial_data
  • https://gitee.com/endlesshh/opencv343_face_recognition

http://www.ppmy.cn/news/1129151.html

相关文章

搭建自己的pypi服务器

要搭建自己的 PyPI 服务器&#xff0c;您可以使用 warehouse 项目&#xff0c;它是 PyPI 的开源实现。下面是一些基本步骤&#xff1a; 准备环境&#xff1a; 安装 Python安装 PostgreSQL 数据库 克隆 warehouse 项目&#xff1a; git clone https://github.com/pypa/wareh…

秦时明月卡牌版攻略,最强的推图阵容推荐

这篇文章提供了关于秦时明月卡牌版游戏最强推图攻略2023的详细信息&#xff0c;以帮助玩家在游戏中创建最强的推图阵容。让我们一起来看看这些新的信息吧。 关注【娱乐天梯】&#xff0c;获取内部福利号 秦时明月卡牌版强大的推图组合提议 推图游戏中&#xff0c;绝对不可忽视的…

用css画一个半圆弧(以小程序为例)

一、html结构 圆弧的html结构是 两个块级元素嵌套。 <View classNamewrap><View className"inner">{/* 图标下的内容 */}</View></View>二、css样式&#xff1a;原理是两个半圆叠在一起&#xff0c;就是一个半圆弧。那么&#xff0c;如何画一…

Python函数式编程(二)高阶函数functools

前面一篇中对map()、filter()等高阶函数进行了介绍&#xff0c;在functools模块中python提供了更多的高阶函数。高阶函数是函数式编程的重要基础&#xff0c;高阶函数的理解往往也比较困难。高阶函数的特点在前面已经介绍过了&#xff0c;这里就不再重复。 函数缓存装饰器 fu…

Mysql生产随笔

目录 1. Mysql批量Kill删除processlist 1.1查看进程、拼接、导出、执行 1.2常见错误解决方案 2.关于时区 3.内存占用优化 记录一下生产过程中的一些场景和命令使用方法&#xff0c;不定期进行更新 1. Mysql批量Kill删除processlist 1.1查看进程、拼接、导出、执行 sho…

uni-app:showModal中实现弹窗中文本框输入

效果 代码 <template><view><!-- 显示弹窗的按钮 --><button click"showInputDialog">显示弹窗</button></view> </template><script> export default {methods: {showInputDialog() {uni.showModal({title: 请完成…

机器学习-特征选择:如何使用交叉验证精准选择最优特征?

一、引言 在机器学习任务中&#xff0c;选择最重要和相关的特征对于构建高性能的模型至关重要。特征选择旨在从原始数据中挑选出最具信息量和预测力的特征&#xff0c;以降低维度和噪声的影响&#xff0c;提高模型的泛化能力和效率。有效的特征选择可以帮助我们理解数据、简化模…

Flutter开发桌面应用的一些探索分享

引言 在移动应用开发领域&#xff0c;Flutter已经赢得了广泛的认可和采用&#xff0c;成为了跨平台移动应用开发的瑞士军刀。然而&#xff0c;Flutter的魅力并不仅限于移动平台&#xff0c;它还可以用于开发桌面应用程序&#xff0c;为开发人员提供了一种全新的选择。本文将深…