《动手学深度学习 Pytorch版》 4.10 实战Kaggle比赛:预测比赛

news/2024/11/24 14:01:19/

4.10.1 下载和缓存数据集

import hashlib
import os
import tarfile
import zipfile
import requests#@save
DATA_HUB = dict()
DATA_URL = 'http://d2l-data.s3-accelerate.amazonaws.com/'
def download(name, cache_dir=os.path.join('..', 'data')):  #@save"""下载一个DATA_HUB中的文件,返回本地文件名"""assert name in DATA_HUB, f"{name} 不存在于 {DATA_HUB}"url, sha1_hash = DATA_HUB[name]os.makedirs(cache_dir, exist_ok=True)fname = os.path.join(cache_dir, url.split('/')[-1])if os.path.exists(fname):sha1 = hashlib.sha1()with open(fname, 'rb') as f:while True:data = f.read(1048576)if not data:breaksha1.update(data)if sha1.hexdigest() == sha1_hash:return fname  # 命中缓存print(f'正在从{url}下载{fname}...')r = requests.get(url, stream=True, verify=True)with open(fname, 'wb') as f:f.write(r.content)return fname
def download_extract(name, folder=None):  #@save"""下载并解压zip/tar文件"""fname = download(name)base_dir = os.path.dirname(fname)data_dir, ext = os.path.splitext(fname)if ext == '.zip':fp = zipfile.ZipFile(fname, 'r')elif ext in ('.tar', '.gz'):fp = tarfile.open(fname, 'r')else:assert False, '只有zip/tar文件可以被解压缩'fp.extractall(base_dir)return os.path.join(base_dir, folder) if folder else data_dirdef download_all():  #@save"""下载DATA_HUB中的所有文件"""for name in DATA_HUB:download(name)

4.10.2 Kaggle

好久没用的老帐号给我删了?

4.10.3 访问和读取数据集

%matplotlib inline
import numpy as np
import pandas as pd
import torch
from torch import nn
from d2l import torch as d2l
# 使用前面定义的脚本下载并缓存数据DATA_HUB['kaggle_house_train'] = (  #@saveDATA_URL + 'kaggle_house_pred_train.csv','585e9cc93e70b39160e7921475f9bcd7d31219ce')DATA_HUB['kaggle_house_test'] = (  #@saveDATA_URL + 'kaggle_house_pred_test.csv','fa19780a7b011d9b009e8bff8e99922a8ee2eb90')
# 使用pandas分别加载数据train_data = pd.read_csv(download('kaggle_house_train'))
test_data = pd.read_csv(download('kaggle_house_test'))
print(train_data.shape)
print(test_data.shape)
print(train_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]])  # 查看前四个和后两个
(1460, 81)
(1459, 80)Id  MSSubClass MSZoning  LotFrontage SaleType SaleCondition  SalePrice
0   1          60       RL         65.0       WD        Normal     208500
1   2          20       RL         80.0       WD        Normal     181500
2   3          60       RL         68.0       WD        Normal     223500
3   4          70       RL         60.0       WD       Abnorml     140000
all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:]))  # 删除不带预测信息的Id

4.10.4 数据预处理

numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index  # 定位数值列
all_features[numeric_features] = all_features[numeric_features].apply(lambda x: (x - x.mean()) / (x.std()))  # 标准化数据
all_features[numeric_features] = all_features[numeric_features].fillna(0)  # 将缺失值设为0
# 处理离散值 “Dummy_na=True”将“na”(缺失值)视为有效的特征值,并为其创建指示符特征all_features = pd.get_dummies(all_features, dummy_na=True)
all_features.shape
(2919, 331)
n_train = train_data.shape[0]  # 获取样本数
# 从pandas格式中提取NumPy格式,并将其转换为张量表示用于训练
train_features = torch.tensor(all_features[:n_train].values, dtype=torch.float32)
test_features = torch.tensor(all_features[n_train:].values, dtype=torch.float32)
train_labels = torch.tensor(train_data.SalePrice.values.reshape(-1, 1), dtype=torch.float32)

4.10.5 训练

# 整一个带有损失平方的线性模型作为基线模型loss = nn.MSELoss()
in_features = train_features.shape[1]def get_net():# net = nn.Sequential(nn.Linear(in_features, 1))net = nn.Sequential(nn.Linear(in_features, 256),nn.ReLU(),nn.Linear(256, 64),nn.ReLU(),nn.Linear(64, 1))return net
# 由于房价预测更在意相对误差,故进行取对数处理def log_rmse(net, features, labels):clipped_preds = torch.clamp(net(features), 1, float('inf'))  # 将房价范围限制在1到无穷大,进一步稳定其值rmse = torch.sqrt(loss(torch.log(clipped_preds),torch.log(labels)))  # 取对数再算均方根误差return rmse.item()
# 使用对学习率不敏感的Adam优化器def train(net, train_features, train_labels, test_features, test_labels,num_epochs, learning_rate, weight_decay, batch_size):train_ls, test_ls = [], []train_iter = d2l.load_array((train_features, train_labels), batch_size)  # 加载训练集数据optimizer = torch.optim.Adam(net.parameters(),lr = learning_rate,weight_decay = weight_decay)  # 使用Adam优化算法for epoch in range(num_epochs):for X, y in train_iter:optimizer.zero_grad()l = loss(net(X), y)l.backward()optimizer.step()train_ls.append(log_rmse(net, train_features, train_labels))if test_labels is not None:test_ls.append(log_rmse(net, test_features, test_labels))return train_ls, test_ls

4.10.6 K折交叉验证

def get_k_fold_data(k, i, X, y):assert k > 1fold_size = X.shape[0] // k  # 计算子集数据量X_train, y_train = None, Nonefor j in range(k):idx = slice(j * fold_size, (j + 1) * fold_size)X_part, y_part = X[idx, :], y[idx]  # 截取当前子集数据if j == i:X_valid, y_valid = X_part, y_partelif X_train is None:X_train, y_train = X_part, y_partelse:X_train = torch.cat([X_train, X_part], 0)y_train = torch.cat([y_train, y_part], 0)return X_train, y_train, X_valid, y_valid
# 完成训练后需要求误差的平均值def k_fold(k, X_train, y_train, num_epochs, learning_rate, weight_decay,batch_size):train_l_sum, valid_l_sum = 0, 0for i in range(k):data = get_k_fold_data(k, i, X_train, y_train)net = get_net()train_ls, valid_ls = train(net, *data, num_epochs, learning_rate,weight_decay, batch_size)train_l_sum += train_ls[-1]valid_l_sum += valid_ls[-1]if i == 0:d2l.plot(list(range(1, num_epochs + 1)), [train_ls, valid_ls],xlabel='epoch', ylabel='rmse', xlim=[1, num_epochs],legend=['train', 'valid'], yscale='log')print(f'折{i + 1},训练log rmse{float(train_ls[-1]):f}, 'f'验证log rmse{float(valid_ls[-1]):f}')return train_l_sum / k, valid_l_sum / k

4.10.7 模型选择

k, num_epochs, lr, weight_decay, batch_size = 10, 100, 0.03, 0.05, 256
train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs, lr,weight_decay, batch_size)
print(f'{k}-折验证: 平均训练log rmse: {float(train_l):f}, 'f'平均验证log rmse: {float(valid_l):f}')
折1,训练log rmse0.099098, 验证log rmse0.162470
折2,训练log rmse0.091712, 验证log rmse0.114310
折3,训练log rmse0.107151, 验证log rmse0.151471
折4,训练log rmse0.103659, 验证log rmse0.167303
折5,训练log rmse0.102100, 验证log rmse0.165151
折6,训练log rmse0.110199, 验证log rmse0.131012
折7,训练log rmse0.105075, 验证log rmse0.146769
折8,训练log rmse0.109164, 验证log rmse0.123824
折9,训练log rmse0.096305, 验证log rmse0.174747
折10,训练log rmse0.096146, 验证log rmse0.136332
10-折验证: 平均训练log rmse: 0.102061, 平均验证log rmse: 0.147339

在这里插入图片描述

4.10.8 提交 Kaggle 预测

def train_and_pred(train_features, test_features, train_labels, test_data,num_epochs, lr, weight_decay, batch_size):net = get_net()train_ls, _ = train(net, train_features, train_labels, None, None,num_epochs, lr, weight_decay, batch_size)d2l.plot(np.arange(1, num_epochs + 1), [train_ls], xlabel='epoch',ylabel='log rmse', xlim=[1, num_epochs], yscale='log')print(f'训练log rmse:{float(train_ls[-1]):f}')# 将网络应用于测试集。preds = net(test_features).detach().numpy()# 将其重新格式化以导出到Kaggletest_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)submission.to_csv('submission.csv', index=False)
train_and_pred(train_features, test_features, train_labels, test_data,num_epochs, lr, weight_decay, batch_size)
训练log rmse:0.091832

在这里插入图片描述


http://www.ppmy.cn/news/1109057.html

相关文章

动手学深度学习——Windows下的环境安装流程(一步一步安装,图文并配)

目录 环境安装官网步骤图文版安装Miniconda下载包含本书全部代码的压缩包使用conda创建虚拟(运行)环境使用conda创建虚拟环境并安装本书需要的软件激活之前创建的环境打开Jupyter记事本 环境安装 文章参考来源:http://t.csdn.cn/tu8V8 官网…

目标检测YOLO实战应用案例100讲-基于小样本学习和空间约束的濒危动物目标检测(续)

目录 濒危动物图像空间约束算法 4.1 知识词典 4.2 空间约束算法 4.2.1 算法设计

面对 HR 的空窗期提问,你会如何回答?

原文链接 面对 HR 的空窗期提问,你会如何回答? 你是否有过这样的经历,在一段时间内,你离开了工作岗位,或者在寻找新的工作机会,这段时间我们称之为“空窗期”。 对于这段时间,我们该如何看待&…

GStreamer基本的接口

1、 gchar * gst_version_string () 或 void gst_version (guint * major,guint * minor,guint * micro,guint * nano) 获取版本信息 2、void gst_init (int* argc,char*** argv) 初始化 3、void gst_deinit () 反初始化, 通常不需要在普通应用程序中调用…

SpringMvc第六战-【SpringMvcJSON返回异常处理机制】

前言: 小编讲述了:JSR303的概念,应用场景和在具体实例的使用;和拦截器的应用 今天小编来讲述的为cJSON返回&异常处理机制,json返回就不用多说,毕竟大部分数据都是通过Json来传递数据的,异…

WangEditor在Vue前端的应用

1、在Vue项目中安装WangEditor 对于Vue2: npm install wangeditor/editor-for-vue --save 或者 yarn add wangeditor/editor-for-vue 对于Vue3: npm install wangeditor/editor-for-vuenext --save 或者 yarn add wangeditor/editor-for-vuenext 2、将Wa…

免杀对抗-Python-混淆算法+反序列化-打包生成器-Pyinstall

Python-MSF/CS生成shellcode-上线 cs上线 1.生成shellcode-c或者python 2.打开pycharm工具,创建一个py文件,将原生态执行代码复制进去 shellcode执行代码: import ctypesfrom django.contrib.gis import ptr#cs#shellcodebytearray(b"生…

BWT算法及例程

BWT(Burrows-Wheeler Transform)算法是一种无损数据压缩算法,它通过重排输入数据的字符顺序来创建一个更易于压缩的形式。下面是一个简单的例程,展示了如何使用BWT算法来压缩和解压缩文本数据。 压缩过程: 构建所有可…