第4章_瑞萨MCU零基础入门系列教程之瑞萨 MCU 源码设计规范

news/2024/11/30 8:29:55/

本教程基于韦东山百问网出的 DShanMCU-RA6M5开发板 进行编写,需要的同学可以在这里获取: https://item.taobao.com/item.htm?id=728461040949

配套资料获取:https://renesas-docs.100ask.net

瑞萨MCU零基础入门系列教程汇总: https://blog.csdn.net/qq_35181236/article/details/132779862


第4章 瑞萨 MCU 源码设计规范

本章目标

  • 了解 FSP 源码结构和设计规范
  • 理解模块设计思路与调用方法

4.1 总体框架

4.1.1 源码层次与目录

瑞萨给开发者提供了“灵活配置软件包”(FSP,Flexible Software Package),从底往上提供了多层次的软件,如下图所示:

image1

从下往上可以分为这几层:

  1. 板级支持包(BSP,Board Support Package):简单地说,从上电开始执行的第 1 条指令直到 main 函数,这个过程的代码就是 BSP 提供的。它的主要任务是确保 MCU 从复位状态切换为用户应用程序状态。在此过程中,它将设置时钟、中断、栈、堆及 C 语言运行环境。它还会配置端口的 I/O 引脚,并执行任何特定的电路板初始化。函数以"R_BSP_"开头,宏以"BSP_“开头,数据类型以”_bsp"开头。
  2. 硬件抽象层驱动(HAL,Hardware Abstraction Layer Drivers):简单地说,使用 BSP的代码可以让程序运行到 main 函数,但是在 main 函数里怎么去访问 GPIO、I2C、SPI 等设备,需要使用 HAL 的代码。HAL 就是对 MCU 寄存器操作的封装,通过 HAL 函数,编写程序时无需关注底层具体的硬件操作,而是把精力放在更上层的操作上,这样编写的代码也更容易移植到其他 MCU 上。函数名以"R_"开头。
  3. 中间件(Middleware):中间件层位于 HAL 层之上、用户应用程序之下,为应用程序提供功能栈和协议。比如想模拟一个 USB 串口时,HAL 层已经实现了 USB 的传输,而 USB 串口协议是在 USB 传输之上实现的一套机制,USB 串口协议是一套纯软件的协议,可以归为中间件。
  4. 实时操作系统(RTOS,Real Time Operating System):它仅仅依赖于底下的 BSP,提供多任务、同步互斥等功能。
  5. 应用程序(Application):在最上层,它可以使用 HAL 函数访问硬件,也可以使用中间件完成复杂的功能。

以第 1 个程序为例,工程目录如下:

  1. BSP 源码:从文件名字可以知道功能为启动、系统、时钟/中断相关的操作
  1. HAL 源码:这个程序只涉及 GPIO 的操作,所以只有 ioport 相关的 HAL 源码
  1. BSP 的配置文件:这些文件是 FSP 的配置工具生成的,里面是 BSP 相关的参数
  1. 用户数据:比如用户在 FSP 配置界面选择使用哪些 GPIO、哪些 SPI 控制器

  1. 用户代码(Application):可以在 hal_entry.c 里添加自己的代码

image2.4

  1. 链接脚本:使用 e2 studio 时,它是使用 GNU GCC 工具链来编译程序,需要链接脚本

4.1.2 调用过程示例

以工程“MyBlinkyProject”为例,在 hal_entry.c 中,操作 LED 的代码如下:

void hal_entry(void)
{/* TODO: add your own code here */extern bsp_leds_t g_bsp_leds;bsp_leds_t Leds = g_bsp_leds;while (1){g_ioport.p_api->pinWrite(&g_ioport.p_ctrl, Leds.p_leds[BSP_LED_LED1],         			BSP_IO_LEVEL_LOW);R_BSP_SoftwareDelay(1, BSP_DELAY_UNITS_SECONDS);g_ioport.p_api->pinWrite(&g_ioport.p_ctrl, Leds.p_leds[BSP_LED_LED1],        			BSP_IO_LEVEL_HIGH);R_BSP_SoftwareDelay(1, BSP_DELAY_UNITS_SECONDS);}
#if BSP_TZ_SECURE_BUILD/* Enter non-secure code */R_BSP_NonSecureEnter();
#endif
}
  • 第9行的“g_ioport.p_api->pinWrite”就是调用r_ioport.c里的“R_IOPORT_PinWrite”函数,这是 Application 对 HAL 库函数的调用。

4.2 模块设计思想

使用 FSP 编写程序时有 4 个层次:Application 是用户编写的,Middleware 是第 3 方的代码,BSP 的代码量很少,所以 HAL 层是 FSP 的核心。HAL 层是各个模块的驱动程序,这些驱动程序被称为Module,一个Module向上提供接口供人调用,向下可能要用到其他Module,如下:

怎么使用一个 Module 提供的接口呢?以工程“MyBlinkyProject”为例,有以下 2 种方法调用 r_ioport.c 提供接口:

g_ioport.p_api->pinWrite(&g_ioport.p_ctrl, Leds.p_leds[BSP_LED_LED1], BSP_IO_LEVEL_LOW);
R_IOPORT_PinWrite(&g_ioport_ctrl, Leds.p_leds[BSP_LED_LED1], BSP_IO_LEVEL_LOW);

它们有何不同?这就涉及 FSP 源码设计的理念:

  1. 配置与接口分离
  2. 接口与实例分离

4.2.1 配置与接口分离

以 GPIO 为例,如下图有 1 个 LED、1 个按键:

对于同一个 MCU,PIN1、PIN2 的操作是类似的,它们的接口函数可以只写一套。但是PIN1 需要被设置为输出功能,PIN2 需要被设置为输入功能并且使能它的内部上拉电阻。即:PIN1、PIN2 的接口函数可以是同一套,但是它们的配置是不一样的。

对于 ioport,使用 ioport_pin_cfg_t 结构体来描述一个引脚的配置:

typedef struct st_ioport_pin_cfg
{uint32_t pin_cfg; ///< Pin PFS configuration - Use ioport_cfg_options_t parametersto configurebsp_io_port_pin_t pin; ///< Pin identifier
} ioport_pin_cfg_t;

比如对于 PIN1,在 FSP 的配置工具里把它配置为输出;对于 PIN2,在 FSP 的配置工具里把它配置为输入、上拉,可以得到下面 2 项:

const ioport_pin_cfg_t g_bsp_pin_cfg_data[] ={
……
{ .pin = BSP_IO_PORT_00_PIN_05, .pin_cfg = ((uint32_t) IOPORT_CFG_IRQ_ENABLE| (uint32_t) IOPORT_CFG_PORT_DIRECTION_INPUT | (uint32_t) IOPORT_CFG_PULLUP_ENABLE) },
{ .pin = BSP_IO_PORT_00_PIN_06, .pin_cfg = ((uint32_t) IOPORT_CFG_PORT_DIRECTION_OUTPUT| (uint32_t) IOPORT_CFG_PORT_OUTPUT_LOW) },
……
};

使用硬件前,需要使用接口函数根据用户提供的配置信息来配置硬件。对于 ioport,使用 ioport_api_t 结构体来描述引脚的接口函数,在 r_ioport.c 里可以看到如下结构体:

/* IOPort Implementation of IOPort Driver */
const ioport_api_t g_ioport_on_ioport =
{.open = R_IOPORT_Open,.close = R_IOPORT_Close,.pinsCfg = R_IOPORT_PinsCfg,.pinCfg = R_IOPORT_PinCfg,.pinEventInputRead = R_IOPORT_PinEventInputRead,.pinEventOutputWrite = R_IOPORT_PinEventOutputWrite,.pinRead = R_IOPORT_PinRead,.pinWrite = R_IOPORT_PinWrite,.portDirectionSet = R_IOPORT_PortDirectionSet,.portEventInputRead = R_IOPORT_PortEventInputRead,.portEventOutputWrite = R_IOPORT_PortEventOutputWrite,.portRead = R_IOPORT_PortRead,.portWrite = R_IOPORT_PortWrite,
};

对于 ioport,配置与接口是分离的:在 ioport_cfg_t 参数里指定引脚、指定配置值,然后调用“pinCfg”函数指针去配置引脚。使用 FSP 的配置工具时,选择某个引脚、设置它的参数,就会生成对应的 ioport_cfg_t 结构体。当我们编写程序调用 r_ioport.c 里的pinCfg”函数指针时,传入这个 ioport_cfg_t 结构体。

4.2.2 接口与实例分离

假设有如下图所示的两代产品,它们的 LED 接法不一样:

image2.7

对于第 1 代产品,在 r_ioport.c 里已经实现了如下结构体:

/* IOPort Implementation of IOPort Driver */
const ioport_api_t g_ioport_on_ioport =
{.open = R_IOPORT_Open,.close = R_IOPORT_Close,.pinsCfg = R_IOPORT_PinsCfg,.pinCfg = R_IOPORT_PinCfg,.pinEventInputRead = R_IOPORT_PinEventInputRead,.pinEventOutputWrite = R_IOPORT_PinEventOutputWrite,.pinRead = R_IOPORT_PinRead,.pinWrite = R_IOPORT_PinWrite,.portDirectionSet = R_IOPORT_PortDirectionSet,.portEventInputRead = R_IOPORT_PortEventInputRead,.portEventOutputWrite = R_IOPORT_PortEventOutputWrite,.portRead = R_IOPORT_PortRead,.portWrite = R_IOPORT_PortWrite,
};

对于第 2 代产品,我们可以在 r_spiioport.c 里实现如下结构体:

/* IOPort Implementation of SPIIOPort Driver */
const ioport_api_t g_spiioport_on_ioport =
{.open = R_SPIIOPORT_Open,.close = R_SPIIOPORT_Close,.pinsCfg = R_SPIIOPORT_PinsCfg,.pinCfg = R_SPIIOPORT_PinCfg,.pinEventInputRead = R_SPIIOPORT_PinEventInputRead,.pinEventOutputWrite = R_SPIIOPORT_PinEventOutputWrite,.pinRead = R_SPIIOPORT_PinRead,.pinWrite = R_SPIIOPORT_PinWrite,.portDirectionSet = R_SPIIOPORT_PortDirectionSet,.portEventInputRead = R_SPIIOPORT_PortEventInputRead,.portEventOutputWrite = R_SPIIOPORT_PortEventOutputWrite,.portRead = R_SPIIOPORT_PortRead,.portWrite = R_SPIIOPORT_PortWrite,
};

现在有两个接口结构体:g_ioport_on_ioport、g_spiioport_on_ioport,使用哪一个?在哪里指定?需要引入另一个概念:实例。以 ioport 为例,有如下结构体类型:

/** This structure encompasses everything that is needed to use an instance of this 
interface.
*/
typedef struct st_ioport_instance
{ioport_ctrl_t * p_ctrl; ///< Pointer to the control structure for this instanceioport_cfg_t const * p_cfg; ///< Pointer to the configuration structure for this instanceioport_api_t const * p_api; ///< Pointer to the API structure for this instance
} ioport_instance_t;

ioport_instance_t 结构体中有 3 个成员:

  1. p_cfg 指针:使用不同的引脚、不同的配置时,就让它指向一个对应的配置结构体;
  2. p_api 指针:使用不同的硬件接口时,就让它指向对应的接口函数结构体;
  3. p_ctrl 指针:起辅助作用,比如用来标记是否启用了该模块、记录它的寄存器基地址

以工程“MyBlinkyProject”为例,在 ra_gen\common_data.c 中定义了一个实例化对象:

const ioport_instance_t g_ioport =
{ .p_api = &g_ioport_on_ioport, .p_ctrl = &g_ioport_ctrl, .p_cfg = &g_bsp_pin_cfg, };

g_ioport 里:

  • p_cfg 指向 g_bsp_pin_cfg,它是配置信息;
  • p_api 指向 g_ioport_on_ioport,它是接口信息;
  • p_ctrl 指向 g_ioport_ctrl,它只是被用来记录驱动是否被打开。

对于第 1 代产品,g_ioport 的 p_api 指向 g_ioport_on_ioport;对于第 2 代产品,让它指向 g_spiioport_on_ioport。使用实例化结构体 g_ioport 来操作 LED 时,即使更换了底层的操作接口,用户的代码仍然无需改变:

g_ioport.p_api->pinWrite(&g_ioport.p_ctrl, Leds.p_leds[BSP_LED_LED1], BSP_IO_LEVEL_LOW);

如果直接使用接口函数操作 LED 的话,如下:

R_IOPORT_PinWrite(&g_ioport_ctrl, Leds.p_leds[BSP_LED_LED1], BSP_IO_LEVEL_LOW);

对于第 2 代产品,就需要修改成另一个接口,如下:

R_SPIIOPORT_PinWrite(&g_ioport_ctrl, Leds.p_leds[BSP_LED_LED1], BSP_IO_LEVEL_LOW);

使用实例化结构体来操作硬件,在代码的统一性、可读性和可移植性上是有很大优势的。它允许应用程序和硬件之间的进一步抽象。更改底层的外围设备时,只需要修改实例化结构体,不需要更改应用层代码。在实际开发过程中,也可以直接调用底层 API 函数(比如 R_IOPORT_PinWrite),这有两个原因:

  1. 基于编译器优化的考虑:假设定义了 10 个 API 接口函数,但是应用层代码只用到 1 个,那么另外的 9 个函数是可以被“优化掉”的,它们可以不被编进可执行程序里。如果使用实例化结构体的话,因为 p_api 里引用了这 10 个函数,它们都不会被优化掉。
  2. 一些客户可能只希望调用最底层的 API(避免过于繁琐的函数指针)。

4.3 代码规范

4.3.1 术语

  • **模块(Module):**模块可以是外设驱动程序、纯软件或介于这两者之间,并且是 FSP 的构建模块。模块通常是独立的单元,但它们可能依赖于其他模块。可以通过组合多个模块来构建应用程序,为用户提供所需功能。
  • 模块实例(Module Instance): 单个、独立的实例化(配置)模块。比如 r_ioport.c实现了 GPIO 的操作,它是一个 Module。要操作某个引脚时,就需要“模块实例”即“ioport_instance_t 结构体”,它里面含有配置信息、接口信息。
  • 接口( Interfaces): 接口包含 API 定义,具有相似功能的模块可以共用这些 API 定义。模块通过这些定义提供常用功能。通过这些 API 定义,使用相同接口的模块可以互换使用。可以将接口视为两个模块之间的合同,两个模块均同意使用合同中达成一致的信息进行协作。接口只是定义,并不会增加代码的大小。比如在 r_ioport_api.h 里定义了 ioport 的 API。
  • 实例(Instances): 接口规定所提供的功能,而实例则真正实现了这些功能。比如r_ioport.h 里定义了 API 接口,在 r_ioport.c 里实现了这些接口,r_ioport.c 就是“实例”。
  • 驱动程序( Drivers): 驱动程序是一种特定类型的模块,可以直接修改 RA 产品家族MCU 上的寄存器。
  • **堆叠(Stacks):**这个单词很容易跟 C 语言里的堆(heap)、栈(stack)混淆,但是在这里它不是堆栈的意思。FSP 架构所采用的设计方式是,模块可以协同工作以形成一个堆叠。堆叠就是由顶层模块及其所有依赖项组成,简单地说就是多个有依赖关系的模块。
  • 应用程序(Application): 归用户所有并由用户维护的代码。
  • 回调函数(Callback Functions): 当有事件发生时(例如,USB 接收到一些数据时),将调用这些函数。它们是应用程序的组成部分,如果用于中断,应尽量简短,因为它们将在中断服务程序内运行,会阻止其他中断执行。

4.3.2 API 命名规则

一般来说,内部函数遵循“NounNounVerb”(名词名词动词)的命名约定,例如CommunicationAbort()。函数的返回值表示是否成功,函数要对外输出结果时,这些结果只在输出参数中返回,并且第一个参数始终是指向其控制结构体的指针。下面是 FSP 中常用前缀:

  1. R_BSP_xxx: BSP 函数的前缀,例如 R_BSP_VersionGet()。
  2. BSP_xxx: BSP 宏的前缀,例如 BSP_IO_LEVEL_LOW。
  3. FSP_xxx: 常用的 FSP的前缀,主要定义错误代码(例如 FSP_ERR_INVALID_ARGUMENT)和版本信息(例如 FSP_VERSION_BUILD)。
  4. g_<interface>on<instance>: 实例的常量全局结构体的名称,用这个结构体管理 API 的各个实现函数,比如 g_ioport_on_ioport 结构体里是 r_ioport.c 实现的各个 API 函数。
  5. r_<interface>_api.h: 接口模块头文件的名称,例如 r_spi_api.h。
  6. R_<MODULE>_<Function>: FSP 驱动程序 API 的名称,例如 R_SPI_WriteRead()。
  7. RM_<MODULE>_<Function>: 中间件函数的名称,例如 RM_BLE_ABS_Open()。

本章完

http://www.ppmy.cn/news/1102160.html

相关文章

Java集合面试

文章目录 Java集合框架说说有哪些常见的集合&#xff1f;ArrayList和LinkedList的区别&#xff1f;List和Set的区别&#xff1f;HashMap的数据结构&#xff1f;把你了解的所有都讲一讲&#xff1f;数据结构&#xff1a; put流程Hashmap的resize方法的执行过程&#xff1f;get流…

STM32WB55开发(3)----断开蓝牙连接

STM32WB55开发----3.断开蓝牙连接 概述硬件准备视频教学样品申请选择芯片型号配置时钟源配置时钟树RTC时钟配置查看开启STM32_WPAN条件配置HSEM配置IPCC配置RTC启动RF开启蓝牙LED配置设置工程信息工程文件设置参考文档SVCCTL_App_NotificationACI_HAL_GET_LINK_STATUShci_disco…

设计模式-组合模式(Composite)

文章目录 前言一、组合模式的概念二、组合模式的优缺点1.优点2.缺点 三、组合模式的实现总结 前言 组合模式&#xff08;Composite Pattern&#xff09;是一种结构型设计模式&#xff0c;它允许你将对象组合成树状结构以表示“整体-部分”的层次结构。组合模式使得客户端可以统…

发送HTTP请求

HTTP请求是一种客户端向服务器发送请求的协议。它是基于TCP/IP协议的应用层协议&#xff0c;用于在Web浏览器和Web服务器之间传输数据。 HTTP请求由以下几个部分组成&#xff1a; 请求行&#xff1a;包含请求方法、请求的URL和HTTP协议的版本。常见的请求方法有GET、POST、PUT、…

Golang开发--channel的使用

在 Go 语言中&#xff0c;channel&#xff08;通道&#xff09;是一种用于在 goroutine 之间进行通信和同步的并发原语。它提供了一种安全且简单的方式来传递数据。 通道的详细描述和使用方法 1.定义通道&#xff1a; 通道是通过使用 make 函数来创建的。通道有特定的类型&am…

CSDN每日一练 |『非负整数求和』『Ctrl+X,Ctrl+V』『小艺改编字符串』『数制转换』2023-09-10

CSDN每日一练 |『非负整数求和』『Ctrl+X,Ctrl+V』『小艺改编字符串』『数制转换』2023-09-10 一、题目名称:非负整数求和二、题目名称:Ctrl+X,Ctrl+V三、题目名称:小艺改编字符串四、题目名称:数制转换一、题目名称:非负整数求和 时间限制:1000ms内存限制:256M 题目描…

Go和Java实现抽象工厂模式

Go和Java实现抽象工厂模式 本文通过简单数据库操作案例来说明抽象工厂模式的使用&#xff0c;使用Go语言和Java语言实现。 1、抽象工厂模式 抽象工厂模式是围绕一个超级工厂创建其他工厂。该超级工厂又称为其他工厂的工厂。这种类型的设计模式属于创 建型模式&#xff0c;它…

多输入多输出 | MATLAB实现CNN-LSTM-Attention卷积神经网络-长短期记忆网络结合SE注意力机制的多输入多输出预测

多输入多输出 | MATLAB实现CNN-LSTM-Attention卷积神经网络-长短期记忆网络结合SE注意力机制的多输入多输出预测 目录 多输入多输出 | MATLAB实现CNN-LSTM-Attention卷积神经网络-长短期记忆网络结合SE注意力机制的多输入多输出预测预测效果基本介绍程序设计往期精彩参考资料 预…