Redis高级篇 - 多级缓存

news/2024/11/9 0:54:19/

多级缓存

1.什么是多级缓存

传统的缓存策略一般是请求到达Tomcat后,先查询Redis,如果未命中则查询数据库,如图:

image-20210821075259137

存在下面的问题:

  • 请求要经过Tomcat处理,Tomcat的性能成为整个系统的瓶颈

  • Redis缓存失效时,会对数据库产生冲击

多级缓存就是充分利用请求处理的每个环节,分别添加缓存,减轻Tomcat压力,提升服务性能:

  • 浏览器访问静态资源时,优先读取浏览器本地缓存
  • 访问非静态资源(ajax查询数据)时,访问服务端
  • 请求到达Nginx后,优先读取Nginx本地缓存
  • 如果Nginx本地缓存未命中,则去直接查询Redis(不经过Tomcat)
  • 如果Redis查询未命中,则查询Tomcat
  • 请求进入Tomcat后,优先查询JVM进程缓存
  • 如果JVM进程缓存未命中,则查询数据库

image-20210821075558137

在多级缓存架构中,Nginx内部需要编写本地缓存查询、Redis查询、Tomcat查询的业务逻辑,因此这样的nginx服务不再是一个反向代理服务器,而是一个编写业务的Web服务器了

因此这样的业务Nginx服务也需要搭建集群来提高并发,再有专门的nginx服务来做反向代理,如图:

image-20210821080511581

另外,我们的Tomcat服务将来也会部署为集群模式:

image-20210821080954947

可见,多级缓存的关键有两个:

  • 一个是在nginx中编写业务,实现nginx本地缓存、Redis、Tomcat的查询

  • 另一个就是在Tomcat中实现JVM进程缓存

其中Nginx编程则会用到OpenResty框架结合Lua这样的语言。

2.JVM进程缓存

为了演示多级缓存的案例,我们先准备一个商品查询的业务。

2.1.导入案例

2.2.初识Caffeine

缓存在日常开发中启动至关重要的作用,由于是存储在内存中,数据的读取速度是非常快的,能大量减少对数据库的访问,减少数据库的压力。我们把缓存分为两类:

  • 分布式缓存,例如Redis:
    • 优点:存储容量更大、可靠性更好、可以在集群间共享
    • 缺点:访问缓存有网络开销
    • 场景:缓存数据量较大、可靠性要求较高、需要在集群间共享
  • 进程本地缓存,例如HashMap、GuavaCache:
    • 优点:读取本地内存,没有网络开销,速度更快
    • 缺点:存储容量有限、可靠性较低、无法共享
    • 场景:性能要求较高,缓存数据量较小

我们今天会利用Caffeine框架来实现JVM进程缓存。

Caffeine是一个基于Java8开发的,提供了近乎最佳命中率的高性能的本地缓存库。目前Spring内部的缓存使用的就是Caffeine。GitHub地址:https://github.com/ben-manes/caffeine

Caffeine的性能非常好,下图是官方给出的性能对比:

image-20210821081826399

可以看到Caffeine的性能遥遥领先!

缓存使用的基本API:

@Test
void testBasicOps() {// 构建cache对象Cache<String, String> cache = Caffeine.newBuilder().build();// 存数据cache.put("gf", "迪丽热巴");// 取数据String gf = cache.getIfPresent("gf");System.out.println("gf = " + gf);// 取数据,包含两个参数:// 参数一:缓存的key// 参数二:Lambda表达式,表达式参数就是缓存的key,方法体是查询数据库的逻辑// 优先根据key查询JVM缓存,如果未命中,则执行参数二的Lambda表达式String defaultGF = cache.get("defaultGF", key -> {// 根据key去数据库查询数据return "柳岩";});System.out.println("defaultGF = " + defaultGF);
}

Caffeine既然是缓存的一种,肯定需要有缓存的清除策略,不然的话内存总会有耗尽的时候。

Caffeine提供了三种缓存驱逐策略:

  • 基于容量:设置缓存的数量上限

    // 创建缓存对象
    Cache<String, String> cache = Caffeine.newBuilder().maximumSize(1) // 设置缓存大小上限为 1.build();
    
  • 基于时间:设置缓存的有效时间

    // 创建缓存对象
    Cache<String, String> cache = Caffeine.newBuilder()// 设置缓存有效期为 10 秒,从最后一次写入开始计时 .expireAfterWrite(Duration.ofSeconds(10)) .build();
  • 基于引用:设置缓存为软引用或弱引用,利用GC来回收缓存数据。性能较差,不建议使用。

注意:在默认情况下,当一个缓存元素过期的时候,Caffeine不会自动立即将其清理和驱逐。而是在一次读或写操作后,或者在空闲时间完成对失效数据的驱逐。

2.3.实现JVM进程缓存

2.3.1.需求

利用Caffeine实现下列需求:

  • 给根据id查询商品的业务添加缓存,缓存未命中时查询数据库
  • 给根据id查询商品库存的业务添加缓存,缓存未命中时查询数据库
  • 缓存初始大小为100
  • 缓存上限为10000

2.3.2.实现

首先,我们需要定义两个Caffeine的缓存对象,分别保存商品、库存的缓存数据。

在item-service的com.heima.item.config包下定义CaffeineConfig类:

@Configuration
public class CaffeineConfig {@Beanpublic Cache<Long, Item> itemCache(){return Caffeine.newBuilder().initialCapacity(100).maximumSize(10_000).build();}@Beanpublic Cache<Long, ItemStock> stockCache(){return Caffeine.newBuilder().initialCapacity(100).maximumSize(10_000).build();}
}

然后,修改item-service中的com.heima.item.web包下的ItemController类,添加缓存逻辑:

@RestController
@RequestMapping("item")
public class ItemController {@Autowiredprivate IItemService itemService;@Autowiredprivate IItemStockService stockService;@Autowiredprivate Cache<Long, Item> itemCache;@Autowiredprivate Cache<Long, ItemStock> stockCache;// ...其它略@GetMapping("/{id}")public Item findById(@PathVariable("id") Long id) {return itemCache.get(id, key -> itemService.query().ne("status", 3).eq("id", key).one());}@GetMapping("/stock/{id}")public ItemStock findStockById(@PathVariable("id") Long id) {return stockCache.get(id, key -> stockService.getById(key));}
}

3.Lua语法入门

Nginx编程需要用到Lua语言,因此我们必须先入门Lua的基本语法。

3.1.初识Lua

Lua 是一种轻量小巧的脚本语言,用标准C语言编写并以源代码形式开放, 其设计目的是为了嵌入应用程序中,从而为应用程序提供灵活的扩展和定制功能。官网:https://www.lua.org/

image-20210821091437975

Lua经常嵌入到C语言开发的程序中,例如游戏开发、游戏插件等。

Nginx本身也是C语言开发,因此也允许基于Lua做拓展。

3.1.HelloWorld

CentOS7默认已经安装了Lua语言环境,所以可以直接运行Lua代码。

1)在Linux虚拟机的任意目录下,新建一个hello.lua文件

image-20210821091621308

2)添加下面的内容

print("Hello World!")  

3)运行

image-20210821091638140

3.2.变量和循环

学习任何语言必然离不开变量,而变量的声明必须先知道数据的类型。

3.2.1.Lua的数据类型

Lua中支持的常见数据类型包括:

image-20210821091835406

另外,Lua提供了type()函数来判断一个变量的数据类型:

image-20210821091904332

3.2.2.声明变量

Lua声明变量的时候无需指定数据类型,而是用local来声明变量为局部变量:

-- 声明字符串,可以用单引号或双引号,
local str = 'hello'
-- 字符串拼接可以使用 ..
local str2 = 'hello' .. 'world'
-- 声明数字
local num = 21
-- 声明布尔类型
local flag = true

Lua中的table类型既可以作为数组,又可以作为Java中的map来使用。数组就是特殊的table,key是数组角标而已:

-- 声明数组 ,key为角标的 table
local arr = {'java', 'python', 'lua'}
-- 声明table,类似java的map
local map =  {name='Jack', age=21}

Lua中的数组角标是从1开始,访问的时候与Java中类似:

-- 访问数组,lua数组的角标从1开始
print(arr[1])

Lua中的table可以用key来访问:

-- 访问table
print(map['name'])
print(map.name)

3.2.3.循环

对于table,我们可以利用for循环来遍历。不过数组和普通table遍历略有差异。

遍历数组:

-- 声明数组 key为索引的 table
local arr = {'java', 'python', 'lua'}
-- 遍历数组
for index,value in ipairs(arr) doprint(index, value) 
end

遍历普通table

-- 声明map,也就是table
local map = {name='Jack', age=21}
-- 遍历table
for key,value in pairs(map) doprint(key, value) 
end

3.3.条件控制、函数

Lua中的条件控制和函数声明与Java类似。

3.3.1.函数

定义函数的语法:

function 函数名( argument1, argument2..., argumentn)-- 函数体return 返回值
end

例如,定义一个函数,用来打印数组:

function printArr(arr)for index, value in ipairs(arr) doprint(value)end
end

3.3.2.条件控制

类似Java的条件控制,例如if、else语法:

if(布尔表达式)
then--[ 布尔表达式为 true 时执行该语句块 --]
else--[ 布尔表达式为 false 时执行该语句块 --]
end

与java不同,布尔表达式中的逻辑运算是基于英文单词:

image-20210821092657918

3.3.3.案例

需求:自定义一个函数,可以打印table,当参数为nil时,打印错误信息

function printArr(arr)if not arr thenprint('数组不能为空!')endfor index, value in ipairs(arr) doprint(value)end
end

4.实现多级缓存

多级缓存的实现离不开Nginx编程,而Nginx编程又离不开OpenResty。

4.1.安装OpenResty

OpenResty® 是一个基于 Nginx的高性能 Web 平台,用于方便地搭建能够处理超高并发、扩展性极高的动态 Web 应用、Web 服务和动态网关。具备下列特点:

  • 具备Nginx的完整功能
  • 基于Lua语言进行扩展,集成了大量精良的 Lua 库、第三方模块
  • 允许使用Lua自定义业务逻辑自定义库

官方网站: https://openresty.org/cn/

image-20210821092902946

安装Lua可以参考 安装OpenResty

4.2.OpenResty快速入门

我们希望达到的多级缓存架构如图:

yeVDlwtfMx

其中:

  • windows上的nginx用来做反向代理服务,将前端的查询商品的ajax请求代理到OpenResty集群

  • OpenResty集群用来编写多级缓存业务

4.2.1.反向代理流程

现在,商品详情页使用的是假的商品数据。不过在浏览器中,可以看到页面有发起ajax请求查询真实商品数据。

这个请求如下:

image-20210821093144700

请求地址是localhost,端口是80,就被windows上安装的Nginx服务给接收到了。然后代理给了OpenResty集群:

image-20210821094447709

我们需要在OpenResty中编写业务,查询商品数据并返回到浏览器。

但是这次,我们先在OpenResty接收请求,返回假的商品数据。

4.2.2.OpenResty监听请求

OpenResty的很多功能都依赖于其目录下的Lua库,需要在nginx.conf中指定依赖库的目录,并导入依赖:

1)添加对OpenResty的Lua模块的加载

修改/usr/local/openresty/nginx/conf/nginx.conf文件,在其中的http下面,添加下面代码:

#lua 模块
lua_package_path "/usr/local/openresty/lualib/?.lua;;";
#c模块     
lua_package_cpath "/usr/local/openresty/lualib/?.so;;";  

2)监听/api/item路径

修改/usr/local/openresty/nginx/conf/nginx.conf文件,在nginx.conf的server下面,添加对/api/item这个路径的监听:

location  /api/item {# 默认的响应类型default_type application/json;# 响应结果由lua/item.lua文件来决定content_by_lua_file lua/item.lua;
}

这个监听,就类似于SpringMVC中的@GetMapping("/api/item")做路径映射。

content_by_lua_file lua/item.lua则相当于调用item.lua这个文件,执行其中的业务,把结果返回给用户。相当于java中调用service。

4.2.3.编写item.lua

1)在/usr/loca/openresty/nginx目录创建文件夹:lua

image-20210821100755080

2)在/usr/loca/openresty/nginx/lua文件夹下,新建文件:item.lua

image-20210821100801756

3)编写item.lua,返回假数据

item.lua中,利用ngx.say()函数返回数据到Response中

ngx.say('{"id":10001,"name":"SALSA AIR","title":"RIMOWA 21寸托运箱拉杆箱 SALSA AIR系列果绿色 820.70.36.4","price":17900,"image":"https://m.360buyimg.com/mobilecms/s720x720_jfs/t6934/364/1195375010/84676/e9f2c55f/597ece38N0ddcbc77.jpg!q70.jpg.webp","category":"拉杆箱","brand":"RIMOWA","spec":"","status":1,"createTime":"2019-04-30T16:00:00.000+00:00","updateTime":"2019-04-30T16:00:00.000+00:00","stock":2999,"sold":31290}')

4)重新加载配置

nginx -s reload

刷新商品页面:http://localhost/item.html?id=1001,即可看到效果:

image-20210821101217089

4.3.请求参数处理

上一节中,我们在OpenResty接收前端请求,但是返回的是假数据。

要返回真实数据,必须根据前端传递来的商品id,查询商品信息才可以。

那么如何获取前端传递的商品参数呢?

4.3.1.获取参数的API

OpenResty中提供了一些API用来获取不同类型的前端请求参数:

image-20210821101433528

4.3.2.获取参数并返回

在前端发起的ajax请求如图:

image-20210821101721649

可以看到商品id是以路径占位符方式传递的,因此可以利用正则表达式匹配的方式来获取ID

1)获取商品id

修改/usr/loca/openresty/nginx/nginx.conf文件中监听/api/item的代码,利用正则表达式获取ID:

location ~ /api/item/(\d+) {# 默认的响应类型default_type application/json;# 响应结果由lua/item.lua文件来决定content_by_lua_file lua/item.lua;
}

2)拼接ID并返回

修改/usr/loca/openresty/nginx/lua/item.lua文件,获取id并拼接到结果中返回:

-- 获取商品id
local id = ngx.var[1]
-- 拼接并返回
ngx.say('{"id":' .. id .. ',"name":"SALSA AIR","title":"RIMOWA 21寸托运箱拉杆箱 SALSA AIR系列果绿色 820.70.36.4","price":17900,"image":"https://m.360buyimg.com/mobilecms/s720x720_jfs/t6934/364/1195375010/84676/e9f2c55f/597ece38N0ddcbc77.jpg!q70.jpg.webp","category":"拉杆箱","brand":"RIMOWA","spec":"","status":1,"createTime":"2019-04-30T16:00:00.000+00:00","updateTime":"2019-04-30T16:00:00.000+00:00","stock":2999,"sold":31290}')

3)重新加载并测试

运行命令以重新加载OpenResty配置:

nginx -s reload

刷新页面可以看到结果中已经带上了ID:

image-20210821102235467

4.4.查询Tomcat

拿到商品ID后,本应去缓存中查询商品信息,不过目前我们还未建立nginx、redis缓存。因此,这里我们先根据商品id去tomcat查询商品信息。我们实现如图部分:

image-20210821102610167

需要注意的是,我们的OpenResty是在虚拟机,Tomcat是在Windows电脑上。两者IP一定不要搞错了。

image-20210821102959829

4.4.1.发送http请求的API

nginx提供了内部API用以发送http请求:

local resp = ngx.location.capture("/path",{method = ngx.HTTP_GET,   -- 请求方式args = {a=1,b=2},  -- get方式传参数
})

返回的响应内容包括:

  • resp.status:响应状态码
  • resp.header:响应头,是一个table
  • resp.body:响应体,就是响应数据

注意:这里的path是路径,并不包含IP和端口。这个请求会被nginx内部的server监听并处理。

但是我们希望这个请求发送到Tomcat服务器,所以还需要编写一个server来对这个路径做反向代理:

 location /path {# 这里是windows电脑的ip和Java服务端口,需要确保windows防火墙处于关闭状态proxy_pass http://192.168.150.1:8081; }

原理如图:

image-20210821104149061

4.4.2.封装http工具

下面,我们封装一个发送Http请求的工具,基于ngx.location.capture来实现查询tomcat。

1)添加反向代理,到windows的Java服务

因为item-service中的接口都是/item开头,所以我们监听/item路径,代理到windows上的tomcat服务。

修改 /usr/local/openresty/nginx/conf/nginx.conf文件,添加一个location:

location /item {proxy_pass http://192.168.150.1:8081;
}

以后,只要我们调用ngx.location.capture("/item"),就一定能发送请求到windows的tomcat服务。

2)封装工具类

之前我们说过,OpenResty启动时会加载以下两个目录中的工具文件:

image-20210821104857413

所以,自定义的http工具也需要放到这个目录下。

/usr/local/openresty/lualib目录下,新建一个common.lua文件:

vi /usr/local/openresty/lualib/common.lua

内容如下:

-- 封装函数,发送http请求,并解析响应
local function read_http(path, params)local resp = ngx.location.capture(path,{method = ngx.HTTP_GET,args = params,})if not resp then-- 记录错误信息,返回404ngx.log(ngx.ERR, "http请求查询失败, path: ", path , ", args: ", args)ngx.exit(404)endreturn resp.body
end
-- 将方法导出
local _M = {  read_http = read_http
}  
return _M

这个工具将read_http函数封装到_M这个table类型的变量中,并且返回,这类似于导出。

使用的时候,可以利用require('common')来导入该函数库,这里的common是函数库的文件名。

3)实现商品查询

最后,我们修改/usr/local/openresty/lua/item.lua文件,利用刚刚封装的函数库实现对tomcat的查询:

-- 引入自定义common工具模块,返回值是common中返回的 _M
local common = require("common")
-- 从 common中获取read_http这个函数
local read_http = common.read_http
-- 获取路径参数
local id = ngx.var[1]
-- 根据id查询商品
local itemJSON = read_http("/item/".. id, nil)
-- 根据id查询商品库存
local itemStockJSON = read_http("/item/stock/".. id, nil)

这里查询到的结果是json字符串,并且包含商品、库存两个json字符串,页面最终需要的是把两个json拼接为一个json:

image-20210821110441222

这就需要我们先把JSON变为lua的table,完成数据整合后,再转为JSON。

4.4.3.CJSON工具类

OpenResty提供了一个cjson的模块用来处理JSON的序列化和反序列化。

官方地址: https://github.com/openresty/lua-cjson/

1)引入cjson模块:

local cjson = require "cjson"

2)序列化:

local obj = {name = 'jack',age = 21
}
-- 把 table 序列化为 json
local json = cjson.encode(obj)

3)反序列化:

local json = '{"name": "jack", "age": 21}'
-- 反序列化 json为 table
local obj = cjson.decode(json);
print(obj.name)

4.4.4.实现Tomcat查询

下面,我们修改之前的item.lua中的业务,添加json处理功能:

-- 导入common函数库
local common = require('common')
local read_http = common.read_http
-- 导入cjson库
local cjson = require('cjson')-- 获取路径参数
local id = ngx.var[1]
-- 根据id查询商品
local itemJSON = read_http("/item/".. id, nil)
-- 根据id查询商品库存
local itemStockJSON = read_http("/item/stock/".. id, nil)-- JSON转化为lua的table
local item = cjson.decode(itemJSON)
local stock = cjson.decode(stockJSON)-- 组合数据
item.stock = stock.stock
item.sold = stock.sold-- 把item序列化为json 返回结果
ngx.say(cjson.encode(item))

4.4.5.基于ID负载均衡

刚才的代码中,我们的tomcat是单机部署。而实际开发中,tomcat一定是集群模式:

image-20210821111023255

因此,OpenResty需要对tomcat集群做负载均衡。

而默认的负载均衡规则是轮询模式,当我们查询/item/10001时:

  • 第一次会访问8081端口的tomcat服务,在该服务内部就形成了JVM进程缓存
  • 第二次会访问8082端口的tomcat服务,该服务内部没有JVM缓存(因为JVM缓存无法共享),会查询数据库

你看,因为轮询的原因,第一次查询8081形成的JVM缓存并未生效,直到下一次再次访问到8081时才可以生效,缓存命中率太低了。

怎么办?

如果能让同一个商品,每次查询时都访问同一个tomcat服务,那么JVM缓存就一定能生效了。

也就是说,我们需要根据商品id做负载均衡,而不是轮询。

1)原理

nginx提供了基于请求路径做负载均衡的算法:

nginx根据请求路径做hash运算,把得到的数值对tomcat服务的数量取余,余数是几,就访问第几个服务,实现负载均衡。

例如:

  • 我们的请求路径是 /item/10001
  • tomcat总数为2台(8081、8082)
  • 对请求路径/item/1001做hash运算求余的结果为1
  • 则访问第一个tomcat服务,也就是8081

只要id不变,每次hash运算结果也不会变,那就可以保证同一个商品,一直访问同一个tomcat服务,确保JVM缓存生效。

2)实现

修改/usr/local/openresty/nginx/conf/nginx.conf文件,实现基于ID做负载均衡。

首先,定义tomcat集群,并设置基于路径做负载均衡:

upstream tomcat-cluster {hash $request_uri;server 192.168.150.1:8081;server 192.168.150.1:8082;
}

然后,修改对tomcat服务的反向代理,目标指向tomcat集群:

location /item {proxy_pass http://tomcat-cluster;
}

重新加载OpenResty

nginx -s reload

3)测试

启动两台tomcat服务:

image-20210821112420464

同时启动:

image-20210821112444482

清空日志后,再次访问页面,可以看到不同id的商品,访问到了不同的tomcat服务:
image-20210821112559965
image-20210821112637430

4.5.Redis缓存预热

Redis缓存会面临冷启动问题:

冷启动:服务刚刚启动时,Redis中并没有缓存,如果所有商品数据都在第一次查询时添加缓存,可能会给数据库带来较大压力。

缓存预热:在实际开发中,我们可以利用大数据统计用户访问的热点数据,在项目启动时将这些热点数据提前查询并保存到Redis中。

我们数据量较少,并且没有数据统计相关功能,目前可以在启动时将所有数据都放入缓存中。

1)利用Docker安装Redis

docker run --name redis -p 6379:6379 -d redis redis-server --appendonly yes

2)在item-service服务中引入Redis依赖

<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>

3)配置Redis地址

spring:redis:host: 192.168.150.101

4)编写初始化类

缓存预热需要在项目启动时完成,并且必须是拿到RedisTemplate之后。

这里我们利用InitializingBean接口来实现,因为InitializingBean可以在对象被Spring创建并且成员变量全部注入后执行。

@Component
public class RedisHandler implements InitializingBean {@Autowiredprivate StringRedisTemplate redisTemplate;@Autowiredprivate IItemService itemService;@Autowiredprivate IItemStockService stockService;private static final ObjectMapper MAPPER = new ObjectMapper();@Overridepublic void afterPropertiesSet() throws Exception {// 初始化缓存// 1.查询商品信息List<Item> itemList = itemService.list();// 2.放入缓存for (Item item : itemList) {// 2.1.item序列化为JSONString json = MAPPER.writeValueAsString(item);// 2.2.存入redisredisTemplate.opsForValue().set("item:id:" + item.getId(), json);}// 3.查询商品库存信息List<ItemStock> stockList = stockService.list();// 4.放入缓存for (ItemStock stock : stockList) {// 2.1.item序列化为JSONString json = MAPPER.writeValueAsString(stock);// 2.2.存入redisredisTemplate.opsForValue().set("item:stock:id:" + stock.getId(), json);}}
}

4.6.查询Redis缓存

现在,Redis缓存已经准备就绪,我们可以再OpenResty中实现查询Redis的逻辑了。如下图红框所示:

image-20210821113340111

当请求进入OpenResty之后:

  • 优先查询Redis缓存
  • 如果Redis缓存未命中,再查询Tomcat

4.6.1.封装Redis工具

OpenResty提供了操作Redis的模块,我们只要引入该模块就能直接使用。但是为了方便,我们将Redis操作封装到之前的common.lua工具库中。

修改/usr/local/openresty/lualib/common.lua文件:

1)引入Redis模块,并初始化Redis对象

-- 导入redis
local redis = require('resty.redis')
-- 初始化redis
local red = redis:new()
red:set_timeouts(1000, 1000, 1000)

2)封装函数,用来释放Redis连接,其实是放入连接池

-- 关闭redis连接的工具方法,其实是放入连接池
local function close_redis(red)local pool_max_idle_time = 10000 -- 连接的空闲时间,单位是毫秒local pool_size = 100 --连接池大小local ok, err = red:set_keepalive(pool_max_idle_time, pool_size)if not ok thenngx.log(ngx.ERR, "放入redis连接池失败: ", err)end
end

3)封装函数,根据key查询Redis数据

-- 查询redis的方法 ip和port是redis地址,key是查询的key
local function read_redis(ip, port, key)-- 获取一个连接local ok, err = red:connect(ip, port)if not ok thenngx.log(ngx.ERR, "连接redis失败 : ", err)return nilend-- 查询redislocal resp, err = red:get(key)-- 查询失败处理if not resp thenngx.log(ngx.ERR, "查询Redis失败: ", err, ", key = " , key)end--得到的数据为空处理if resp == ngx.null thenresp = nilngx.log(ngx.ERR, "查询Redis数据为空, key = ", key)endclose_redis(red)return resp
end

4)导出

-- 将方法导出
local _M = {  read_http = read_http,read_redis = read_redis
}  
return _M

完整的common.lua:

-- 导入redis
local redis = require('resty.redis')
-- 初始化redis
local red = redis:new()
red:set_timeouts(1000, 1000, 1000)-- 关闭redis连接的工具方法,其实是放入连接池
local function close_redis(red)local pool_max_idle_time = 10000 -- 连接的空闲时间,单位是毫秒local pool_size = 100 --连接池大小local ok, err = red:set_keepalive(pool_max_idle_time, pool_size)if not ok thenngx.log(ngx.ERR, "放入redis连接池失败: ", err)end
end-- 查询redis的方法 ip和port是redis地址,key是查询的key
local function read_redis(ip, port, key)-- 获取一个连接local ok, err = red:connect(ip, port)if not ok thenngx.log(ngx.ERR, "连接redis失败 : ", err)return nilend-- 查询redislocal resp, err = red:get(key)-- 查询失败处理if not resp thenngx.log(ngx.ERR, "查询Redis失败: ", err, ", key = " , key)end--得到的数据为空处理if resp == ngx.null thenresp = nilngx.log(ngx.ERR, "查询Redis数据为空, key = ", key)endclose_redis(red)return resp
end-- 封装函数,发送http请求,并解析响应
local function read_http(path, params)local resp = ngx.location.capture(path,{method = ngx.HTTP_GET,args = params,})if not resp then-- 记录错误信息,返回404ngx.log(ngx.ERR, "http查询失败, path: ", path , ", args: ", args)ngx.exit(404)endreturn resp.body
end
-- 将方法导出
local _M = {  read_http = read_http,read_redis = read_redis
}  
return _M

4.6.2.实现Redis查询

接下来,我们就可以去修改item.lua文件,实现对Redis的查询了。

查询逻辑是:

  • 根据id查询Redis
  • 如果查询失败则继续查询Tomcat
  • 将查询结果返回

1)修改/usr/local/openresty/lua/item.lua文件,添加一个查询函数:

-- 导入common函数库
local common = require('common')
local read_http = common.read_http
local read_redis = common.read_redis
-- 封装查询函数
function read_data(key, path, params)-- 查询本地缓存local val = read_redis("127.0.0.1", 6379, key)-- 判断查询结果if not val thenngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)-- redis查询失败,去查询httpval = read_http(path, params)end-- 返回数据return val
end

2)而后修改商品查询、库存查询的业务:

image-20210821114528954

3)完整的item.lua代码:

-- 导入common函数库
local common = require('common')
local read_http = common.read_http
local read_redis = common.read_redis
-- 导入cjson库
local cjson = require('cjson')-- 封装查询函数
function read_data(key, path, params)-- 查询本地缓存local val = read_redis("127.0.0.1", 6379, key)-- 判断查询结果if not val thenngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)-- redis查询失败,去查询httpval = read_http(path, params)end-- 返回数据return val
end-- 获取路径参数
local id = ngx.var[1]-- 查询商品信息
local itemJSON = read_data("item:id:" .. id,  "/item/" .. id, nil)
-- 查询库存信息
local stockJSON = read_data("item:stock:id:" .. id, "/item/stock/" .. id, nil)-- JSON转化为lua的table
local item = cjson.decode(itemJSON)
local stock = cjson.decode(stockJSON)
-- 组合数据
item.stock = stock.stock
item.sold = stock.sold-- 把item序列化为json 返回结果
ngx.say(cjson.encode(item))

4.7.Nginx本地缓存

现在,整个多级缓存中只差最后一环,也就是nginx的本地缓存了。如图:

image-20210821114742950

4.7.1.本地缓存API

OpenResty为Nginx提供了shard dict的功能,可以在nginx的多个worker之间共享数据,实现缓存功能。

1)开启共享字典,在nginx.conf的http下添加配置:

 # 共享字典,也就是本地缓存,名称叫做:item_cache,大小150mlua_shared_dict item_cache 150m; 

2)操作共享字典:

-- 获取本地缓存对象
local item_cache = ngx.shared.item_cache
-- 存储, 指定key、value、过期时间,单位s,默认为0代表永不过期
item_cache:set('key', 'value', 1000)
-- 读取
local val = item_cache:get('key')

4.7.2.实现本地缓存查询

1)修改/usr/local/openresty/lua/item.lua文件,修改read_data查询函数,添加本地缓存逻辑:

-- 导入共享词典,本地缓存
local item_cache = ngx.shared.item_cache-- 封装查询函数
function read_data(key, expire, path, params)-- 查询本地缓存local val = item_cache:get(key)if not val thenngx.log(ngx.ERR, "本地缓存查询失败,尝试查询Redis, key: ", key)-- 查询redisval = read_redis("127.0.0.1", 6379, key)-- 判断查询结果if not val thenngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)-- redis查询失败,去查询httpval = read_http(path, params)endend-- 查询成功,把数据写入本地缓存item_cache:set(key, val, expire)-- 返回数据return val
end

2)修改item.lua中查询商品和库存的业务,实现最新的read_data函数:

image-20210821115108528

其实就是多了缓存时间参数,过期后nginx缓存会自动删除,下次访问即可更新缓存。

这里给商品基本信息设置超时时间为30分钟,库存为1分钟。

因为库存更新频率较高,如果缓存时间过长,可能与数据库差异较大。

3)完整的item.lua文件:

-- 导入common函数库
local common = require('common')
local read_http = common.read_http
local read_redis = common.read_redis
-- 导入cjson库
local cjson = require('cjson')
-- 导入共享词典,本地缓存
local item_cache = ngx.shared.item_cache-- 封装查询函数
function read_data(key, expire, path, params)-- 查询本地缓存local val = item_cache:get(key)if not val thenngx.log(ngx.ERR, "本地缓存查询失败,尝试查询Redis, key: ", key)-- 查询redisval = read_redis("127.0.0.1", 6379, key)-- 判断查询结果if not val thenngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)-- redis查询失败,去查询httpval = read_http(path, params)endend-- 查询成功,把数据写入本地缓存item_cache:set(key, val, expire)-- 返回数据return val
end-- 获取路径参数
local id = ngx.var[1]-- 查询商品信息
local itemJSON = read_data("item:id:" .. id, 1800,  "/item/" .. id, nil)
-- 查询库存信息
local stockJSON = read_data("item:stock:id:" .. id, 60, "/item/stock/" .. id, nil)-- JSON转化为lua的table
local item = cjson.decode(itemJSON)
local stock = cjson.decode(stockJSON)
-- 组合数据
item.stock = stock.stock
item.sold = stock.sold-- 把item序列化为json 返回结果
ngx.say(cjson.encode(item))

5.缓存同步

大多数情况下,浏览器查询到的都是缓存数据,如果缓存数据与数据库数据存在较大差异,可能会产生比较严重的后果。

所以我们必须保证数据库数据、缓存数据的一致性,这就是缓存与数据库的同步。

5.1.数据同步策略

缓存数据同步的常见方式有三种:

设置有效期:给缓存设置有效期,到期后自动删除。再次查询时更新

  • 优势:简单、方便
  • 缺点:时效性差,缓存过期之前可能不一致
  • 场景:更新频率较低,时效性要求低的业务

同步双写:在修改数据库的同时,直接修改缓存

  • 优势:时效性强,缓存与数据库强一致
  • 缺点:有代码侵入,耦合度高;
  • 场景:对一致性、时效性要求较高的缓存数据

**异步通知:**修改数据库时发送事件通知,相关服务监听到通知后修改缓存数据

  • 优势:低耦合,可以同时通知多个缓存服务
  • 缺点:时效性一般,可能存在中间不一致状态
  • 场景:时效性要求一般,有多个服务需要同步

而异步实现又可以基于MQ或者Canal来实现:

1)基于MQ的异步通知:

image-20210821115552327

解读:

  • 商品服务完成对数据的修改后,只需要发送一条消息到MQ中。
  • 缓存服务监听MQ消息,然后完成对缓存的更新

依然有少量的代码侵入。

2)基于Canal的通知

image-20210821115719363

解读:

  • 商品服务完成商品修改后,业务直接结束,没有任何代码侵入
  • Canal监听MySQL变化,当发现变化后,立即通知缓存服务
  • 缓存服务接收到canal通知,更新缓存

代码零侵入

5.2.安装Canal

5.2.1.认识Canal

Canal [kə’næl],译意为水道/管道/沟渠,canal是阿里巴巴旗下的一款开源项目,基于Java开发。基于数据库增量日志解析,提供增量数据订阅&消费。GitHub的地址:https://github.com/alibaba/canal

Canal是基于mysql的主从同步来实现的,MySQL主从同步的原理如下:

image-20210821115914748

  • 1)MySQL master 将数据变更写入二进制日志( binary log),其中记录的数据叫做binary log events
  • 2)MySQL slave 将 master 的 binary log events拷贝到它的中继日志(relay log)
  • 3)MySQL slave 重放 relay log 中事件,将数据变更反映它自己的数据

而Canal就是把自己伪装成MySQL的一个slave节点,从而监听master的binary log变化。再把得到的变化信息通知给Canal的客户端,进而完成对其它数据库的同步。

image-20210821115948395

5.2.2.安装Canal

安装和配置Canal

5.3.监听Canal

Canal提供了各种语言的客户端,当Canal监听到binlog变化时,会通知Canal的客户端。

image-20210821120049024

我们可以利用Canal提供的Java客户端,监听Canal通知消息。当收到变化的消息时,完成对缓存的更新。

不过这里我们会使用GitHub上的第三方开源的canal-starter客户端。地址:https://github.com/NormanGyllenhaal/canal-client

与SpringBoot完美整合,自动装配,比官方客户端要简单好用很多。

5.3.1.引入依赖:

<dependency><groupId>top.javatool</groupId><artifactId>canal-spring-boot-starter</artifactId><version>1.2.1-RELEASE</version>
</dependency>

5.3.2.编写配置:

canal:destination: heima # canal的集群名字,要与安装canal时设置的名称一致server: 192.168.150.101:11111 # canal服务地址

5.3.3.修改Item实体类

通过@Id、@Column、等注解完成Item与数据库表字段的映射:

@Data
@TableName("tb_item")
public class Item {@TableId(type = IdType.AUTO)@Idprivate Long id;//商品id@Column(name = "name")private String name;//商品名称private String title;//商品标题private Long price;//价格(分)private String image;//商品图片private String category;//分类名称private String brand;//品牌名称private String spec;//规格private Integer status;//商品状态 1-正常,2-下架private Date createTime;//创建时间private Date updateTime;//更新时间@TableField(exist = false)@Transientprivate Integer stock;@TableField(exist = false)@Transientprivate Integer sold;
}

5.3.4.编写监听器

通过实现EntryHandler<T>接口编写监听器,监听Canal消息。注意两点:

  • 实现类通过@CanalTable("tb_item")指定监听的表信息
  • EntryHandler的泛型是与表对应的实体类
package com.heima.item.canal;import com.github.benmanes.caffeine.cache.Cache;
import com.heima.item.config.RedisHandler;
import com.heima.item.pojo.Item;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;
import top.javatool.canal.client.annotation.CanalTable;
import top.javatool.canal.client.handler.EntryHandler;@CanalTable("tb_item")
@Component
public class ItemHandler implements EntryHandler<Item> {@Autowiredprivate RedisHandler redisHandler;@Autowiredprivate Cache<Long, Item> itemCache;@Overridepublic void insert(Item item) {// 写数据到JVM进程缓存itemCache.put(item.getId(), item);// 写数据到redisredisHandler.saveItem(item);}@Overridepublic void update(Item before, Item after) {// 写数据到JVM进程缓存itemCache.put(after.getId(), after);// 写数据到redisredisHandler.saveItem(after);}@Overridepublic void delete(Item item) {// 删除数据到JVM进程缓存itemCache.invalidate(item.getId());// 删除数据到redisredisHandler.deleteItemById(item.getId());}
}

在这里对Redis的操作都封装到了RedisHandler这个对象中,是我们之前做缓存预热时编写的一个类,内容如下:

@Component
public class RedisHandler implements InitializingBean {@Autowiredprivate StringRedisTemplate redisTemplate;@Autowiredprivate IItemService itemService;@Autowiredprivate IItemStockService stockService;private static final ObjectMapper MAPPER = new ObjectMapper();@Overridepublic void afterPropertiesSet() throws Exception {// 初始化缓存// 1.查询商品信息List<Item> itemList = itemService.list();// 2.放入缓存for (Item item : itemList) {// 2.1.item序列化为JSONString json = MAPPER.writeValueAsString(item);// 2.2.存入redisredisTemplate.opsForValue().set("item:id:" + item.getId(), json);}// 3.查询商品库存信息List<ItemStock> stockList = stockService.list();// 4.放入缓存for (ItemStock stock : stockList) {// 2.1.item序列化为JSONString json = MAPPER.writeValueAsString(stock);// 2.2.存入redisredisTemplate.opsForValue().set("item:stock:id:" + stock.getId(), json);}}public void saveItem(Item item) {try {String json = MAPPER.writeValueAsString(item);redisTemplate.opsForValue().set("item:id:" + item.getId(), json);} catch (JsonProcessingException e) {throw new RuntimeException(e);}}public void deleteItemById(Long id) {redisTemplate.delete("item:id:" + id);}
}

ndler.deleteItemById(item.getId());
}
}

在这里对Redis的操作都封装到了RedisHandler这个对象中,是我们之前做缓存预热时编写的一个类,内容如下:```java
@Component
public class RedisHandler implements InitializingBean {@Autowiredprivate StringRedisTemplate redisTemplate;@Autowiredprivate IItemService itemService;@Autowiredprivate IItemStockService stockService;private static final ObjectMapper MAPPER = new ObjectMapper();@Overridepublic void afterPropertiesSet() throws Exception {// 初始化缓存// 1.查询商品信息List<Item> itemList = itemService.list();// 2.放入缓存for (Item item : itemList) {// 2.1.item序列化为JSONString json = MAPPER.writeValueAsString(item);// 2.2.存入redisredisTemplate.opsForValue().set("item:id:" + item.getId(), json);}// 3.查询商品库存信息List<ItemStock> stockList = stockService.list();// 4.放入缓存for (ItemStock stock : stockList) {// 2.1.item序列化为JSONString json = MAPPER.writeValueAsString(stock);// 2.2.存入redisredisTemplate.opsForValue().set("item:stock:id:" + stock.getId(), json);}}public void saveItem(Item item) {try {String json = MAPPER.writeValueAsString(item);redisTemplate.opsForValue().set("item:id:" + item.getId(), json);} catch (JsonProcessingException e) {throw new RuntimeException(e);}}public void deleteItemById(Long id) {redisTemplate.delete("item:id:" + id);}
}

http://www.ppmy.cn/news/109941.html

相关文章

【PWN · ret2libc】[2021 鹤城杯]babyof

Linux_64的经典ret2libc题目&#xff0c;有必要好好整理总结一下其中的流程和注意点 目录 前言 一、题目重述 二、exp&#xff08;思考与理解在注释&#xff09; 三、经验总结 攻击步骤: 注意要点 四、疑问 前言 64位Linux和32位Linux确乎有着关于参数传递上的不同&a…

四轴姿态解算-imu算法

理论篇 欧拉角四元数方向余弦矩阵 强调三者描述的是坐标系A,A之间的变换关系 欧拉角&#xff0c;四元数&#xff0c;方向余弦矩阵都可以描述四轴的姿态变换 注意这里强调的是变换 三者转换公式 一阶龙格库塔法 核心要点简介: 假设一阶函数随时间关系如: y a * T1b 则,在经…

flex 布局的基本概念 - 详解

flex 布局的基本概念 Flexible Box 模型&#xff0c;通常被称为 flexbox&#xff0c;是一种一维的布局模型。它给 flexbox 的子元素之间提供了强大的空间分布和对齐能力。本文给出了 flexbox 的主要特性&#xff0c;更多的细节将在别的文档中探索。我们说 flexbox 是一种一维的…

AI Canon精选资源清单;带AI功能的PS安装文件与教程;讯飞星火10月对标 ChatGPT;直播换脸工具盘点 | ShowMeAI日报

&#x1f440;日报&周刊合集 | &#x1f3a1;生产力工具与行业应用大全 | &#x1f9e1; 点赞关注评论拜托啦&#xff01; &#x1f916; AI Canon&#xff1a;人工智能精选资源清单 思维导图 ShowMeAI知识星球资源编码&#xff1a;R106 AI Canon 是由美国著名的风投机构 …

Linux系统下imx6ull QT编程—— C++基础(一)

Linux QT编程 文章目录 Linux QT编程前言一、 C的输入输出方式1.cout语法形式2.cin语法形式3.C之命名空间 namespace 前言 学习 C的面向对象编程&#xff0c;对学习 Qt 有很大的帮助 一、 C的输入输出方式 效率上&#xff0c;肯定是 C 语言的 scanf 和 printf 的效率高&#…

JVM学习笔记(中)

1、垃圾回收算法 标记清除法 特点&#xff1a; 速度较快会产生内存碎片 注意&#xff1a;这里的清除并不是真正意义上的清除&#xff0c;即每个字节都清0&#xff0c;而是记录一下被清除的对象的起始和结束的地址&#xff0c;当下一次分配给一个新对象时&#xff0c;新对象…

《MYSQL必知必会》读书笔记1

目录 行 主键 MYSQL工具 使用MYSQL 连接 检索数据 检索&#xff08;SELECT&#xff09; 限制结果&#xff08;LIMIT&#xff09; 排序检索&#xff08;ORDER BY&#xff09; 过滤数据&#xff08;WHERE&#xff09; 过滤数据&#xff08;AND、OR&#xff09; 通配符…

LeetCode - 10 正则表达式匹配

目录 题目来源 题目描述 示例 提示 题目解析 算法源码 题目来源 10. 正则表达式匹配 - 力扣&#xff08;LeetCode&#xff09; 题目描述 给你一个字符串 s 和一个字符规律 p&#xff0c;请你来实现一个支持 . 和 * 的正则表达式匹配。 . 匹配任意单个字符 * 匹配零个或…