机器学习(吴恩达第一课)

news/2024/12/28 9:20:48/

课程链接

文章目录

  • 第一周
    • 1、机器学习定义
    • 2、监督学习(Supervised learning)
      • 1、回归(Regression)
      • 2、分类(Classification)
    • 3、无监督学习(Unsupervised learning)
    • 4、线性回归模型
    • 5、代价函数
    • 6、梯度下降(Gradient descent)
      • 1、学习率
      • 2、用于线性回归的梯度下降
  • 第二周(多维特征)
    • 1、特征缩放
    • 2、如何设置学习率
    • 3、特征工程(Feature engineering)
    • 4、多项式回归(Polynomial regression)
  • 第三周
    • 1、逻辑回归(二元分类)
    • 2、决策边界(decision boundary)
    • 3、逻辑回归中的代价函数
    • 4、简化逻辑回归代价函数
    • 5、实现梯度下降
    • 6、过拟合问题(The Problem of Overfitting)
    • 7、解决过拟合
    • 8、正则化
    • 9、用于线性回归的正则方法
    • 10、用于逻辑回归的正则方法

第一周

1、机器学习定义

在这里插入图片描述

2、监督学习(Supervised learning)

从给出“正确答案”的数据集中学习

1、回归(Regression)

在这里插入图片描述

2、分类(Classification)

在这里插入图片描述
总结

3、无监督学习(Unsupervised learning)

在这里插入图片描述

4、线性回归模型

1.术语。
在这里插入图片描述
2.单变量线性回归
在这里插入图片描述

5、代价函数

平方误差代价函数
在这里插入图片描述

6、梯度下降(Gradient descent)

梯度下降算法选择不同的起点,可能会得到不同的结果,因为它得到的是一个局部最小值。

在这里插入图片描述
在这里插入图片描述

1、学习率

在这里插入图片描述

2、用于线性回归的梯度下降

线性回归的平方误差成本函数时,成本函数没有也永远不会有多个局部最小值,它只有一个全局最小值。因为这个成本函数是一个凸函数。
在这里插入图片描述
梯度下降过程
在这里插入图片描述

第二周(多维特征)

正规方程法(只适用于线性回归)
在这里插入图片描述

1、特征缩放

多个变量的度量不同,数字之间相差的大小也不同,如果可以将所有的特征变量缩放到大致相同范围,这样会减少梯度算法的迭代。
特征缩放不一定非要落到[-1,1]之间,只要数据足够接近就可以。
讨论了三种特征缩放方法:
1、每个特征除以用户选择的值,得到-1到1之间的范围。
2、Mean normalization: x i = x i − μ i m a x − m i n x_i = \frac{x_i-\mu_i}{max-min} xi=maxminxiμi
3、Z-score normalization: X i = X i − μ i σ i X_i = \frac{X_i-\mu_i}{\sigma_i} Xi=σiXiμi μ i \mu_i μi表示平均值, σ i \sigma_i σi表示标准差。

特征值范围太大可能会导致梯度下降运行缓慢,所以需要进行特征缩放。

在这里插入图片描述

2、如何设置学习率

在这里插入图片描述

从小到大依次尝试,找到一个满足梯度下降的最大学习率。
在这里插入图片描述

3、特征工程(Feature engineering)

在这里插入图片描述

4、多项式回归(Polynomial regression)

上述讨论的都是线性回归(只有一次幂)
在这里插入图片描述
在这里插入图片描述

第三周

了解分类问题。
逻辑回归用于 解决y为零或一的二元分类问题。

1、逻辑回归(二元分类)


在这里插入图片描述

2、决策边界(decision boundary)

在这里插入图片描述
在这里插入图片描述
逻辑回归可以拟合相当复杂的数据
在这里插入图片描述

3、逻辑回归中的代价函数

事实证明,通过这种损失函数的选择,整体成本函数将是凸的,因此你可以可靠的使用梯度下降将您带到全局最小值,证明这个函数是凸的,就超过了这个代价的范围。
在这里插入图片描述

4、简化逻辑回归代价函数

在这里插入图片描述

5、实现梯度下降

逻辑回归的梯度下降
在这里插入图片描述
在这里插入图片描述

6、过拟合问题(The Problem of Overfitting)

在这里插入图片描述
在这里插入图片描述

7、解决过拟合

1、对抗过度拟合的第一个工具是获取更多的训练数据。
在这里插入图片描述
2、如果你有很多的特征,但没有足够的训练数据,那么你的学习算法也可能会过度拟合您的训练集。如果我们只选择最有用的一个特征子集,您可能发现您的模型不再过度拟合。
在这里插入图片描述
3、解决过度拟合的第三个选项----正则化
正则化的作用是让你保留所有的特征,它们只是防止特征产生过大的影响(这有时会导致过度拟合),顺便说一句,按照惯例,我们通常只是减小wj参数的大小,即w1~wn。是否正则化参数b并没有太大的区别,通常不这么做 。在实践中是否也正则化b应该没有什么区别。
在这里插入图片描述
在这里插入图片描述

8、正则化

我们希望最小化原始成本,即均方误差成本加上额外的正则化项。所以这个新的成本函数权衡了你可能拥有的两个目标。尝试最小化第一项,并尽量减小第二项。该算法试图使参数wj保持较小,这将有助于减少过拟合。你选择的lambda值指定了相对重要性或相对权衡或你如何在这两个目标之间取得平衡。
在这里插入图片描述
1、如果lambda为0,您最终会拟合这条过度摆动,过于复杂的曲线,并且过度拟合
2、如果你说lambda是一个非常非常大的数字,比如lambda=10^10,那么你对右边的这个正则化项非常重视。最小化这种情况的唯一方法是确保w的所有值都非常接近于0。因此f(x)基本等于b,因此学习算法拟合水平直线和欠拟合。
 
 
 
接下来的两节,将充实如何将正则化应用于线性回归和逻辑回归,以及如何通过梯度下降训练这些模型。您将能够避免这两种算法的过度拟合。

9、用于线性回归的正则方法


在这里插入图片描述

10、用于逻辑回归的正则方法

在这里插入图片描述


http://www.ppmy.cn/news/1088056.html

相关文章

【校招VIP】产品分析之活动策划宣传

考点介绍: 产品的上线运营是非常重要的。应该来说好的产品都是运营出来的,在一运营过程中难免会依靠策划活动来提高产品知名度、用户数。用户粘度等等指标一,如何策划一个成功的活动就显得非常重要。 产品分析之活动策划宣传-相关题目及解析…

在Windows上通过SSH公私钥实现无密码登录Linux

在Windows上通过SSH公私钥实现无密码登录Linux 在Windows上生成SSH密钥对: 打开命令提示符或PowerShell窗口。 输入以下命令生成SSH密钥对: ssh-keygen -t rsa -b 4096按照提示输入密钥的保存路径和密码(可选)。 在指定的路径下…

【ROS】例说mapserver静态地图参数(对照Rviz、Gazebo环境)

文章目录 例说mapserver静态地图参数1. Rviz中显示的地图2. mapserver保存地图详解3. 补充实验 例说mapserver静态地图参数 1. Rviz中显示的地图 在建图过程中,rviz会显示建图的实时情况,其输出来自于SLAM,浅蓝色区域为地图大小&#xff0c…

webpack5 (三)

webpack 高级配置 其实就是对 webpack 进行优化,让代码在编译/运行时性能更好 1. 提升开发体验 2. 提升打包构建速度 3. 减少代码体积 4. 优化代码运行性能 一、提升开发体验 sourcemap 在编译打包后所有的 css 和 js 都合并为了一个文件,并多了很多…

TEB (Timed Elastic Band)

TEB (Timed Elastic Band) 源码:https://github.com/gxt-kt/teb_local_planner 移植了官方的teb源码,实现了普通优化和多路径优化。 移植参考ros源码。无需ros框架即可运行,并使用opencv进行显示。 并用 google 的 ceres-solver 替换 g2o 进…

#systemverilog# 之 event region 和 timeslot 仿真调度(九)assign 赋值 和 always 组合赋值的调度区别

有时候,我们会发现一个问题,举个最简单的例子:比如将两个信号进行简单的异或运算。该逻辑运算,我们可以使用 assign 数据流建模完成,也可以使用always 组合逻辑过程赋值语句实现。那仿真工具在对它进行调度的时候,有什么区别吗? 不慌,今天,我们举个例子,来验证这一点…

批量采集的时间管理与优化

在进行大规模数据采集时,如何合理安排和管理爬取任务的时间成为了每个专业程序员需要面对的挑战。本文将分享一些关于批量采集中时间管理和优化方面的实用技巧,帮助你提升爬虫工作效率。 1. 制定明确目标并设置合适频率 首先要明确自己所需获取数据的范…

ctfhub ssrf(3关)

文章目录 内网访问伪协议读取文件扫描端口 内网访问 根据该题目,是让我们访问127.0.0.1/falg.php,访问给出的链接后用bp抓包,修改URL,发送后得到flag: 伪协议读取文件 这题的让我们用伪协议,而网站的目录…