大模型综述论文笔记6-15

news/2025/4/1 5:12:30/

这里写自定义目录标题

  • Keywords
  • Backgroud for LLMs
    • Technical Evolution of GPT-series Models
      • Research of OpenAI on LLMs can be roughly divided into the following stages
        • Early Explorations
        • Capacity Leap
        • Capacity Enhancement
        • The Milestones of Language Models
  • Resources
  • Pre-training
    • Data Collection
    • Data Preprocessing
      • Quality Filtering
      • De-duplication

Keywords

GPT:Generative Pre-Training

Backgroud for LLMs

Technical Evolution of GPT-series Models

Two key points to GPT’s success are (I) training decoder-onlly Transformer language models that can accurately predict the next word and (II) scaling up the size of language models

Research of OpenAI on LLMs can be roughly divided into the following stages

Early Explorations

请添加图片描述

Capacity Leap

ICT

Capacity Enhancement

1.training on code data
Codex: a GPT model fine-tuned on a large corpus of GitHub
code
2.alignment with human preference
reinforcement learning from human feedback (RLHF) algorithm

Note that it seems that the wording of “instruction tuning” has seldom
been used in OpenAI’s paper and documentation, which is substituted by
supervised fine-tuning on human demonstrations (i.e., the first step
of the RLHF algorithm).

The Milestones of Language Models

chatGPT(based on gpt3.5 and gpt4) and GPT-4(multimodal)

Resources

在这里插入图片描述
Stanford Alpaca is the first open instruct-following model fine-tuned based on LLaMA (7B).
Alpaca LoRA (a reproduction of Stanford Alpaca using LoRA)

model 、data、library

Pre-training

在这里插入图片描述

Data Collection

General Text Data:webpages, books, and conversational text
Specialized Text Data:Multilingual text, Scientific text, Code

Data Preprocessing

Quality Filtering

  1. The former approach trains a selection classifier based on highquality texts and leverages it to identify and filter out low quality data.
  2. heuristic based approaches to eliminate low-quality texts through a set of well-designed rules: Language based filtering, Metric based filtering, Statistic based filtering, Keyword based filtering

De-duplication

Existing work has found that duplicate data in a corpus would reduce the diversity of language models, which may cause the training process to become unstable and thus affect the model performance.

  1. Privacy Redaction: (PII:personally identifiable information )
  2. Tokenization:(It aims to segment raw text into sequences of individual tokens, which are subsequently used as the inputs of LLMs.) Byte-Pair Encoding (BPE) tokenization; WordPiece tokenization; WordPiece tokenization

http://www.ppmy.cn/news/1077034.html

相关文章

ES线程池设置

一文搞懂ES中的线程池 - 知乎 ES线程池设置-阿里云开发者社区 文章目录 一、简介 二、线程池类型 2.1、fixed 2.2、scaling 2.3、direct 2.4、fixed_auto_queue_size 三、处理器设置 四、查看线程池 4.1、cat thread pool 4.2、nodes info 4.3、nodes stats 4.4、no…

python numpy array 中删除含0量高于阈值的行--数据清洗

问题 数据中包含较多0值,类似于包含较大噪声,对结果产生较大影响 目标 对数据进行清洗,在进行其他数据清洗操作的基础上,实现删除数据中包含较多0值的行 可类比推广到删除其他 代码实现 data data[np.sum(data 0, axis1) &…

c++ expected

std::expected 和std::optional差不多,但是std::optional只能表示有正常的值或者为std::nullopt,即空值。而std::expected则可以表示一个期望的值和一个错误的值,相当于两个成员的std::variant,但是在接口上更方便使用。可以把它…

ffmpeg把RTSP流分段录制成MP4,如果能把ffmpeg.exe改成ffmpeg.dll用,那音视频开发的难度直接就降一个维度啊

比如,原来我们要用ffmpeg录一段RTSP视频流转成MP4,我们有两种方案: 方案一:可以使用以下命令将rtsp流分段存储为mp4文件 ffmpeg -i rtsp://example.com/stream -vcodec copy -acodec aac -f segment -segment_time 3600 -reset_t…

算法 -汉诺塔,哈夫曼编码

有三个柱子,分别为 from、buffer、to。需要将 from 上的圆盘全部移动到 to 上,并且要保证小圆盘始终在大圆盘上。 这是一个经典的递归问题,分为三步求解: ① 将 n-1 个圆盘从 from -> buffer ② 将 1 个圆盘从 from -> to ③ 将 n-1 个圆盘从 buffer -> to 如果…

docker 容器pip、git安装异常;容器内web对外端口ping不通

1、docker 容器pip、git安装异常 错误信息: git clone https://github.com/vllm-project/vllm.git Cloning into ‘vllm’… fatal: unable to access ‘https://github.com/vllm-project/vllm.git/’: Failed to connect to 127.0.0.1 port 10808: Connection ref…

AI绘画的一些网址收集

1、负面tag词语收集 https://www.bilibili.com/read/cv19834742 https://y3if3fk7ce.feishu.cn/docx/VOZMdoib8oY7xVxVoYbcA8m1nld 2、如何写关键词 https://y3if3fk7ce.feishu.cn/docx/KqEMdhJigoFY8fxc9TPcwMninKf 3、关键词 https://zhuanlan.zhihu.com/p/573340345 模板词…

QT DAY 2

window.cpp #include "window.h" #include<QDebug> #include<QIcon> Window::Window(QWidget *parent) //构造函数的定义: QWidget(parent) //显性调用父类的构造函数 {//this->resize(430,330);this->resize(QSize(800,600));// this…