高基数类别特征预处理:平均数编码 | 京东云技术团队

news/2025/2/22 15:48:35/

一 前言

对于一个类别特征,如果这个特征的取值非常多,则称它为高基数(high-cardinality)类别特征。在深度学习场景中,对于类别特征我们一般采用Embedding的方式,通过预训练或直接训练的方式将类别特征值编码成向量。在经典机器学习场景中,对于有序类别特征,我们可以使用LabelEncoder进行编码处理,对于低基数无序类别特征(在lightgbm中,默认取值个数小于等于4的类别特征),可以采用OneHotEncoder的方式进行编码,但是对于高基数无序类别特征,若直接采用OneHotEncoder的方式编码,在目前效果比较好的GBDT、Xgboost、lightgbm等树模型中,会出现特征稀疏性的问题,造成维度灾难, 若先对类别取值进行聚类分组,然后再进行OneHot编码,虽然可以降低特征的维度,但是聚类分组过程需要借助较强的业务经验知识。本文介绍一种针对高基数无序类别特征非常有效的预处理方法:平均数编码(Mean Encoding)。在很多数据挖掘类竞赛中,有许多人使用这种方法取得了非常优异的成绩。

二 原理

平均数编码,有些地方也称之为目标编码(Target Encoding),是一种基于目标变量统计(Target Statistics)的有监督编码方式。该方法基于贝叶斯思想,用先验概率和后验概率的加权平均值作为类别特征值的编码值,适用于分类和回归场景。平均数编码的公式如下所示:

其中:

1. prior为先验概率,在分类场景中表示样本属于某一个_y__i_的概率

​其中_n__y__i_​​表示y =_y__i_​时的样本数量,_n__y_​表示y的总数量;在回归场景下,先验概率为目标变量均值:

2. posterior为后验概率,在分类场景中表示类别特征为k时样本属于某一个_y__i_​的概率

在回归场景下表示 类别特征为k时对应目标变量的均值。

3. _λ_为权重函数,本文中的权重函数公式相较于原论文做了变换,是一个单调递减函数,函数公式:

其中 输入是特征类别在训练集中出现的次数n,权重函数有两个参数:

① k:最小阈值,当n = k时,λ= 0.5,先验概率和后验概率的权重相同;当n < k时,λ> 0.5, 先验概率所占的权重更大。

② f:平滑因子,控制权重函数在拐点处的斜率,f越大,曲线坡度越缓。下面是k=1时,不同f对于权重函数的影响:

由图可知,f越大,权重函数S型曲线越缓,正则效应越强。

对于分类问题,在计算后验概率时,目标变量有C个类别,就有C个后验概率,且满足

一个 _y__i_​ 的概率值必然和其他 _y__i_​ 的概率值线性相关,因此为了避免多重共线性问题,采用平均数编码后数据集将增加C-1列特征。对于回归问题,采用平均数编码后数据集将增加1列特征。

三 实践

平均数编码不仅可以对单个类别特征编码,也可以对具有层次结构的类别特征进行编码。比如地区特征,国家包含了省,省包含了市,市包含了街区,对于街区特征,每个街区特征对应的样本数量很少,以至于每个街区特征的编码值接近于先验概率。平均数编码通过加入不同层次的先验概率信息解决该问题。下面将以分类问题对这两个场景进行展开:

1. 单个类别特征编码:

在具体实践时可以借助category_encoders包,代码如下:

import pandas as pd
from category_encoders import TargetEncoderdf = pd.DataFrame({'cat': ['a', 'b', 'a', 'b', 'a', 'a', 'b', 'c', 'c', 'd'], 'target': [1, 0, 0, 1, 0, 0, 1, 1, 0, 1]})
te = TargetEncoder(cols=["cat"], min_samples_leaf=2, smoothing=1)
df["cat_encode"] = te.transform(df)["cat"]
print(df)
# 结果如下:cat	target	cat_encode
0	a	1	0.279801
1	b	0	0.621843
2	a	0	0.279801
3	b	1	0.621843
4	a	0	0.279801
5	a	0	0.279801
6	b	1	0.621843
7	c	1	0.500000
8	c	0	0.500000
9	d	1	0.634471

2. 层次结构类别特征编码:

对以下数据集,方位类别特征具有{‘N’: (‘N’, ‘NE’), ‘S’: (‘S’, ‘SE’), ‘W’: ‘W’}层级关系,以compass中类别NE为例计算_y__i_​=1,k = 2 f = 2时编码值,计算公式如下:

其中_p_1为HIER_compass_1中类别N的编码值,计算可以参考单个类别特征编码: 0.74527,posterior=3/3=1,λ= 0.37754 ,则类别NE的编码值:0.37754 * 0.74527 + (1 - 0.37754)* 1 = 0.90383。

代码如下:

from category_encoders  import TargetEncoder
from category_encoders.datasets import load_compassX, y = load_compass()
# 层次参数hierarchy可以为字典或者dataframe
# 字典形式
hierarchical_map = {'compass': {'N': ('N', 'NE'), 'S': ('S', 'SE'), 'W': 'W'}}
te = TargetEncoder(verbose=2, hierarchy=hierarchical_map, cols=['compass'], smoothing=2, min_samples_leaf=2)
# dataframe形式,HIER_cols的层级顺序由顶向下
HIER_cols = ['HIER_compass_1']
te = TargetEncoder(verbose=2, hierarchy=X[HIER_cols], cols=['compass'], smoothing=2, min_samples_leaf=2)
te.fit(X.loc[:,['compass']], y)
X["compass_encode"] = te.transform(X.loc[:,['compass']])
X["label"] = y
print(X)# 结果如下,compass_encode列为结果列:index	compass	HIER_compass_1	compass_encode	label
0	1	N	N	0.622636	1
1	2	N	N	0.622636	0
2	3	NE	N	0.903830	1
3	4	NE	N	0.903830	1
4	5	NE	N	0.903830	1
5	6	SE	S	0.176600	0
6	7	SE	S	0.176600	0
7	8	S	S	0.460520	1
8	9	S	S	0.460520	0
9	10	S	S	0.460520	1
10	11	S	S	0.460520	0
11	12	W	W	0.403328	1
12	13	W	W	0.403328	0
13	14	W	W	0.403328	0
14	15	W	W	0.403328	0
15	16	W	W	0.403328	1

注意事项:

采用平均数编码,容易引起过拟合,可以采用以下方法防止过拟合:

  • 增大正则项f
  • k折交叉验证

以下为自行实现的基于k折交叉验证版本的平均数编码,可以应用于二分类、多分类、回归场景中对单一类别特征或具有层次结构类别特征进行编码,该版本中用prior对unknown类别和缺失值编码。

from itertools import product
from category_encoders  import TargetEncoder
from sklearn.model_selection import StratifiedKFold, KFoldclass MeanEncoder:def __init__(self, categorical_features, n_splits=5, target_type='classification', min_samples_leaf=2, smoothing=1, hierarchy=None, verbose=0, shuffle=False, random_state=None):"""Parameters----------categorical_features: list of strthe name of the categorical columns to encode.n_splits: intthe number of splits used in mean encoding.target_type: str,'regression' or 'classification'.min_samples_leaf: intFor regularization the weighted average between category mean and global mean is taken. The weight isan S-shaped curve between 0 and 1 with the number of samples for a category on the x-axis.The curve reaches 0.5 at min_samples_leaf. (parameter k in the original paper)smoothing: floatsmoothing effect to balance categorical average vs prior. Higher value means stronger regularization.The value must be strictly bigger than 0. Higher values mean a flatter S-curve (see min_samples_leaf).hierarchy: dict or dataframeA dictionary or a dataframe to define the hierarchy for mapping.If a dictionary, this contains a dict of columns to map into hierarchies.  Dictionary key(s) should be the column name from Xwhich requires mapping.  For multiple hierarchical maps, this should be a dictionary of dictionaries.If dataframe: a dataframe defining columns to be used for the hierarchies.  Column names must take the form:HIER_colA_1, ... HIER_colA_N, HIER_colB_1, ... HIER_colB_M, ...where [colA, colB, ...] are given columns in cols list.  1:N and 1:M define the hierarchy for each column where 1 is the highest hierarchy (top of the tree).  A single column or multiple can be used, as relevant.verbose: intinteger indicating verbosity of the output. 0 for none.shuffle : bool, default=Falserandom_state : int or RandomState instance, default=NoneWhen `shuffle` is True, `random_state` affects the ordering of theindices, which controls the randomness of each fold for each class.Otherwise, leave `random_state` as `None`.Pass an int for reproducible output across multiple function calls."""self.categorical_features = categorical_featuresself.n_splits = n_splitsself.learned_stats = {}self.min_samples_leaf = min_samples_leafself.smoothing = smoothingself.hierarchy = hierarchyself.verbose = verboseself.shuffle = shuffleself.random_state = random_stateif target_type == 'classification':self.target_type = target_typeself.target_values = []else:self.target_type = 'regression'self.target_values = Nonedef mean_encode_subroutine(self, X_train, y_train, X_test, variable, target):X_train = X_train[[variable]].copy()X_test = X_test[[variable]].copy()if target is not None:nf_name = '{}_pred_{}'.format(variable, target)X_train['pred_temp'] = (y_train == target).astype(int)  # classificationelse:nf_name = '{}_pred'.format(variable)X_train['pred_temp'] = y_train  # regressionprior = X_train['pred_temp'].mean()te = TargetEncoder(verbose=self.verbose, hierarchy=self.hierarchy, cols=[variable], smoothing=self.smoothing, min_samples_leaf=self.min_samples_leaf)te.fit(X_train[[variable]], X_train['pred_temp'])tmp_l = te.ordinal_encoder.mapping[0]["mapping"].reset_index()tmp_l.rename(columns={"index":variable, 0:"encode"}, inplace=True)tmp_l.dropna(inplace=True)tmp_r = te.mapping[variable].reset_index()if self.hierarchy is None:tmp_r.rename(columns={variable: "encode", 0:nf_name}, inplace=True)else:tmp_r.rename(columns={"index": "encode", 0:nf_name}, inplace=True)col_avg_y = pd.merge(tmp_l, tmp_r, how="left",on=["encode"])col_avg_y.drop(columns=["encode"], inplace=True)col_avg_y.set_index(variable, inplace=True)nf_train = X_train.join(col_avg_y, on=variable)[nf_name].valuesnf_test = X_test.join(col_avg_y, on=variable).fillna(prior, inplace=False)[nf_name].valuesreturn nf_train, nf_test, prior, col_avg_ydef fit(self, X, y):""":param X: pandas DataFrame, n_samples * n_features:param y: pandas Series or numpy array, n_samples:return X_new: the transformed pandas DataFrame containing mean-encoded categorical features"""X_new = X.copy()if self.target_type == 'classification':skf = StratifiedKFold(self.n_splits, shuffle=self.shuffle, random_state=self.random_state)else:skf = KFold(self.n_splits, shuffle=self.shuffle, random_state=self.random_state)if self.target_type == 'classification':self.target_values = sorted(set(y))self.learned_stats = {'{}_pred_{}'.format(variable, target): [] for variable, target inproduct(self.categorical_features, self.target_values)}for variable, target in product(self.categorical_features, self.target_values):nf_name = '{}_pred_{}'.format(variable, target)X_new.loc[:, nf_name] = np.nanfor large_ind, small_ind in skf.split(y, y):nf_large, nf_small, prior, col_avg_y = self.mean_encode_subroutine(X_new.iloc[large_ind], y.iloc[large_ind], X_new.iloc[small_ind], variable, target)X_new.iloc[small_ind, -1] = nf_smallself.learned_stats[nf_name].append((prior, col_avg_y))else:self.learned_stats = {'{}_pred'.format(variable): [] for variable in self.categorical_features}for variable in self.categorical_features:nf_name = '{}_pred'.format(variable)X_new.loc[:, nf_name] = np.nanfor large_ind, small_ind in skf.split(y, y):nf_large, nf_small, prior, col_avg_y = self.mean_encode_subroutine(X_new.iloc[large_ind], y.iloc[large_ind], X_new.iloc[small_ind], variable, None)X_new.iloc[small_ind, -1] = nf_smallself.learned_stats[nf_name].append((prior, col_avg_y))return X_newdef transform(self, X):""":param X: pandas DataFrame, n_samples * n_features:return X_new: the transformed pandas DataFrame containing mean-encoded categorical features"""X_new = X.copy()if self.target_type == 'classification':for variable, target in product(self.categorical_features, self.target_values):nf_name = '{}_pred_{}'.format(variable, target)X_new[nf_name] = 0for prior, col_avg_y in self.learned_stats[nf_name]:X_new[nf_name] += X_new[[variable]].join(col_avg_y, on=variable).fillna(prior, inplace=False)[nf_name]X_new[nf_name] /= self.n_splitselse:for variable in self.categorical_features:nf_name = '{}_pred'.format(variable)X_new[nf_name] = 0for prior, col_avg_y in self.learned_stats[nf_name]:X_new[nf_name] += X_new[[variable]].join(col_avg_y, on=variable).fillna(prior, inplace=False)[nf_name]X_new[nf_name] /= self.n_splitsreturn X_new

四 总结

本文介绍了一种对高基数类别特征非常有效的编码方式:平均数编码。详细的讲述了该种编码方式的原理,在实际工程应用中有效避免过拟合的方法,并且提供了一个直接上手的代码版本。

作者:京东保险 赵风龙

来源:京东云开发者社区 转载请注明来源


http://www.ppmy.cn/news/1074407.html

相关文章

docker命令整理

一、docker镜像 查找镜像&#xff1a;docker search 镜像名 拉取镜像&#xff1a;docker pull 镜像名:标签 删除镜像&#xff1a;docker rmi 镜像名:标签 进入Dockerfile目录&#xff0c;使用Dockerfile构建镜像&#xff1a;docker build -t testimg:v1.0 . 二、创建容器并运行…

使用生成式 AI 和 ML 模型进行电子邮件和移动主题行优化

结合使用生成式 AI 和 ML 模型,根据语气和受众自动创建引人注目的主题行和标题,以实现最大程度的参与。 电子邮件和推送通知的主题行和标题在确定参与率方面发挥着重要作用。数字通信需要精心设计引人注目的主题行和简洁的推送通知标题来吸引用户的注意力。营销人员根据要传递…

LCD驱动

一、Linux 下 LCD 驱动简析 1.与裸机的异同 在 Linux 中应用程序最终也是通过操作 RGB LCD 的显存来实现在 LCD 上显示字符、图片等信息&#xff0c;但是Linux系统的内存管理严格&#xff0c;使用显存需要申请&#xff0c;因为虚拟内存的存在&#xff0c;驱动程序设置的显存和应…

股票历史数据下载 api

1 网址 Nasdaq Data Link 2 url 测试 https://www.quandl.com/api/v3/datasets/WIKI/AAPL.json?api_key注册的apikey 3 Quandl提供不同的订阅计划&#xff0c;每个订阅计划都有不同的数据访问权限和API请求次数限制。具体收费方式如下&#xff1a;免费订阅计划&#xff1…

AUTOSAR从入门到精通-【应用篇】参照AUTOSAR架构的柴油车后处理集成电控系统软件设计与研究(续)

目录 3.3底层驱动模块开发 3.3.1利用S-Function编写底层驱动模块 3.3.2编写TLC文件来控制自动代码生成过程

Android 之 LayoutInflater (布局服务)

本节引言&#xff1a; 本节继续带来的是Android系统服务中的LayoutInflater(布局服务)&#xff0c;说到布局&#xff0c;大家第一时间 可能想起的是写完一个布局的xml&#xff0c;然后调用Activity的setContentView()加载布局&#xff0c;然后把他显示 到屏幕上是吧~其实这个底…

前端调用电脑摄像头

项目中需要前端调用&#xff0c;所以做了如下操作 先看一下效果吧 主要是基于vue3&#xff0c;通过canvas把画面转成base64的形式&#xff0c;然后是把base64转成 file文件&#xff0c;最后调用了一下上传接口 以下是代码 进入页面先调用一下摄像头 navigator.mediaDevices.ge…

【C++设计模式】依赖倒转原则

2023年8月30日&#xff0c;周三上午 目录 概述含义举个简单的例子传统做法使用依赖倒转原则代码说明再举一个具体的例子以生活为例 概述 依赖倒转原则(Dependency Inversion Principle,DIP)是面向对象设计中的一个基本原则。 含义 高层模块不应该依赖低层模块,两者都应该依…