[多标签分类]MultiLabelBinarizer: 从one-hot 到multi-hot

news/2025/1/16 5:04:10/

]MultiLabelBinarizer: 从one-hot 到multi-hot

  • 背景知识
  • One hot encoder
  • LabelEncoder
  • MultiLabelBinarizer
  • 总结


背景知识

多类别分类: label space至少有3个label, 且默认每个sample有一个label, 与之相对应的是二元分类Binary classification,

多标签分类: 每个sample有1至多个labels, 一般多标签分类都是多类别, 有时又称之为多标签多类别分类.

One hot encoder

Scikit-learn中实现了该功能,

from sklearn.preprocessing import  OneHotEncoder

如下展示了使用OneHotEncoder对label进行度热编码的过程,

encoder = OneHotEncoder()
labels = ['red', 'green', 'blue', 'blue', 'red']
data = np.array(labels).reshape(-1, 1) # shape: (n, 1)
encoder.fit(data)
print(f'encoder.categories_: {encoder.categories_}')
ans = encoder.transform(data).toarray()
ans_rev = encoder.inverse_transform(ans)
print(f'ans: {ans}')
print(f'ans_rev: {ans_rev}')

实际上除了标签列以外,还可以对属性列进行独热编码, 如下对三个属性列进行独热编码:

enc = OneHotEncoder()
enc.fit([[0, 0, 3],[1, 1, 0],[0, 2, 1],[1, 0, 2]]) # shape: (4, 3)
print(f'enc.categories_: {enc.categories_}')
ans = enc.transform([[0, 1, 3]]).toarray() # shape: (1,3)
ans_rev = enc.inverse_transform(ans)
print(f'ans: {ans}') # [[ 1.  0.  0.  1.  0.  0.  0.  0.  1.]]
print(f'ans_rev: {ans_rev}') # ans_rev: [[0 1 3]]

LabelEncoder

这个函数与OneHotEncoder不同,主要用于建立标签与其索引之间的映射关系, 并不能产生独热编码

from sklearn.preprocessing import LabelEncoder

标签可以是数值,

le = LabelEncoder()
le.fit([1, 2, 2, 6])
print(f'label space: {le.classes_}') # array([1, 2, 6])
print(le.transform([1, 1, 2, 6])) # array([0, 0, 1, 2]...)
print(le.inverse_transform([0, 0, 1, 2])) # array([1, 1, 2, 6])

标签也可以是字符串,

le = LabelEncoder()
le.fit(["paris", "paris", "tokyo", "amsterdam"])
print(f'label space: {le.classes_}') # ['amsterdam', 'paris', 'tokyo']
print(le.transform(["tokyo", "tokyo", "paris"])) # array([2, 2, 1]...)
print(le.inverse_transform([2, 2, 1])) # ['tokyo', 'tokyo', 'paris']

MultiLabelBinarizer

用于对多标签进行multi-hot编码,

from sklearn.preprocessing import MultiLabelBinarizer

下面是一个例子展示

y = [[2,3,4],[2],[0,1,3],[0,1,2,3,4],[0,1,2]]
print(f'#samples: {len(y)}')
mbr = MultiLabelBinarizer()
mbr.fit(y)
print(f'label space: {mbr.classes_}') # array([1, 2, 6])
ans = mbr.transform(y)
ans_rev = mbr.inverse_transform(ans)
print(f'ans: {ans}')
print(f'ans_rev: {ans_rev}')

总结

上面几种函数的API类似,使用方式也一样, 总结如下:

1.fit函数用于从输入数据学习一个编码器, 输入一般为[n,d], 表示n个samples, d维,
特别的, 对于MultiLabelBinarizer, d是不定的, 一维每个sample的标签数量不等.
2.执行fit以后得到的编码器有一个classes_属性, 这个属性实际上就是编码空间(有序的), 后面的编码表示实际上 就是基于编码空间来的.
3.执行transform()可以得到输入的编码表示
4.inverse_transform()的作用与transform()相反,主要用于从编码表示得到原始的输入标签.


http://www.ppmy.cn/news/1070649.html

相关文章

克服紧张情绪:程序员面试心理准备的关键

🌷🍁 博主猫头虎 带您 Go to New World.✨🍁 🦄 博客首页——猫头虎的博客🎐 🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 &a…

datasource

spring:datasource:druid:url: jdbc:mysql://localhost:3306/ssm_db?serverTimezoneGMT%2B8&characterEncodingutf-8&useSSLfalsedriver-class-name: com.mysql.cj.jdbc.Driverusername: rootpassword: root注意: 1. 驱动类driver-class-name spring boo…

AI代码生成辅助工具

有许多AI代码生成辅助工具和平台可用,它们可以帮助开发人员生成、优化和理解代码。以下是一些常见的AI代码生成辅助工具,以及它们的特点,希望对大家有所帮助。北京木奇移动技术有限公司,专业的软件外包开发公司,欢迎交…

Android全面屏下,默认不会全屏显示,屏幕底部会留黑问题

前些天发现了一个蛮有意思的人工智能学习网站,8个字形容一下"通俗易懂,风趣幽默",感觉非常有意思,忍不住分享一下给大家。 👉点击跳转到教程 公司以前的老项目,便出现了这种情况,网上搜索了各种资料&#xf…

【Math】导数、梯度、雅可比矩阵、黑塞矩阵

导数、梯度、雅可比矩阵、黑塞矩阵都是与求导相关的一些概念,比较容易混淆,本文主要是对它们的使用场景和定义进行区分。 首先需要先明确一些函数的叫法(是否多元,以粗体和非粗体进行区分): 一元函数&…

“互联网+”背景下燃气行业的数字化之路

文章来源:智慧美好生活 关键词:智慧燃气、智慧燃气场站、智慧燃气平台、设备设施数字化、数字孪生、工业互联网 近年来,随着互联网行业的发展,其影响力正在逐渐渗透到各个领域。在能源行业,各个互联网巨头与燃气企业…

微信小程序云开发案列

基础知识: async 微信小程序中 methods里面使用async 微信小程序中可以在methods里面使用async关键字来定义异步函数。例如: Page({data: {name: Tom,},async onLoad() {const res await wx.request({url: https://api.example.com/users,method: GE…

Vue3 获取proxy包裹的原始数据

一. 通过json序列化 JSON.parse(JSON.stringify(xxx))