whisper.cpp在Windows VS的编译

news/2024/12/11 3:22:22/

Whisper是OpenAI开源的一款语音识别的模型,包含有英语和多国语言的模型,根据实际情况来看,其支持的90多种语言的准确率着实表现惊艳,英文甚至可以做到3%左右的误词率,官方图表显示中文的误词率大约是14%,但是实际使用的情况来看,误词率也是相当低,几乎也在3%左右。

整个whisper系列一共有5个级别的模型,按参数量进行排序,分别是微型tiny,基本base,小型small,中型medium,大型large。

Github上有一个whisper.cpp可以通过C++跨平台部署,支持了Mac/iOS/Android/Linux/Windows/Raspberry Pi等平台。

这里主要是将如何使用源码在Windows平台MSVC上进行编译。实际使用MinGW应该一样或者更加简单。

首先通过Github将源码下载下来:

git clone https://github.com/ggerganov/whisper.cpp

然后通过models/download-ggml-model.cmd进行权重文件下载。

models/download-ggml-model.cmd base

参数base可以替换为base.en,tiny,tiny.en,small,small.en,medium,medium.en,largeen后缀的表示是英语模型,不带en后缀的是多国语言模型。

然后使用cmake-GUI进行项目配置,源码目录设置为源代码的地址C:/GitRepos/whisper.cpp-master,在文件夹下创建一个build文件夹作为输出地址:如C:/GitRepos/whisper.cpp-master/build。点击Confiure后,如果有安装CUDA环境,可以勾选WHISPER_CUBLAS在推理的时候更快,如果没有的话也可以不勾。点击Confiure后确认没有红色内容后点击GenerateOpen Project

在打开VS后需要修改一项内容,在whisper项目右击,属性,在C++->Command Line里面的Addtional Options里面添加/utf-8, 否者whisper.cpp里面有一些未ASCII字符会导致编译whisper.dll的时候出错。注意Debug与Release都要添加。

或者如果只编译CPU版本,不启用CuBlas的话,也可以在CMakeList.txt文件上添加add_compile_options(/utf-8),PR 721:

project(whisper.cpp VERSION 1.4.2)if ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "MSVC")add_compile_options(/utf-8)
endif ()# Add path to modules
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake/")

但是启用CuBlas的话,只能通过右键属性更改,否则/utf-8这个编译参数也会带到nvcc编译器的编译过程中,但是nvcc并不支持这个参数,Issue 840.

修改完成后通过Build->Batch Build...将ALL_BUILD的Debug和Release打钩后点击Build即可。不出意外编译成功应该是输出类似以下内容:

========== Build: 11 succeeded, 0 failed, 1 up-to-date, 0 skipped ==========

然后可以在build/bin/Release(Debug)中看到main.exe文件,通过命令行执行这个文件就可以,注意携带参数。

C:\GitRepos\whisper.cpp-master\build\bin\Release> .\main.exe -m ..\..\..\models\ggml-tiny.bin -f ..\..\..\samples\jfk.wav
whisper_init_from_file_no_state: loading model from '..\..\..\models\ggml-tiny.bin'
whisper_model_load: loading model
whisper_model_load: n_vocab       = 51865
whisper_model_load: n_audio_ctx   = 1500
whisper_model_load: n_audio_state = 384
whisper_model_load: n_audio_head  = 6
whisper_model_load: n_audio_layer = 4
whisper_model_load: n_text_ctx    = 448
whisper_model_load: n_text_state  = 384
whisper_model_load: n_text_head   = 6
whisper_model_load: n_text_layer  = 4
whisper_model_load: n_mels        = 80
whisper_model_load: ftype         = 1
whisper_model_load: qntvr         = 0
whisper_model_load: type          = 1
whisper_model_load: mem required  =  201.00 MB (+    3.00 MB per decoder)
whisper_model_load: adding 1608 extra tokens
whisper_model_load: model ctx     =   73.62 MB
whisper_model_load: model size    =   73.54 MB
whisper_init_state: kv self size  =    2.62 MB
whisper_init_state: kv cross size =    8.79 MBsystem_info: n_threads = 4 / 16 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | VSX = 0 | COREML = 0 |main: processing '..\..\..\samples\jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...[00:00:00.000 --> 00:00:10.500]   And so my fellow Americans ask not what your country can do for you ask what you can do for your country.whisper_print_timings:     load time =   926.39 ms
whisper_print_timings:     fallbacks =   0 p /   0 h
whisper_print_timings:      mel time =   153.92 ms
whisper_print_timings:   sample time =    17.06 ms /    25 runs (    0.68 ms per run)
whisper_print_timings:   encode time =   225.90 ms /     1 runs (  225.90 ms per run)
whisper_print_timings:   decode time =    70.32 ms /    25 runs (    2.81 ms per run)
whisper_print_timings:    total time =  1413.72 ms

在对比了CPU与GPU版本发现,GPU的时间更长,主要是GPU版本在加载模型的load time更长了,实际的推理时间约500ms相比GPU的800ms要短一些的。


http://www.ppmy.cn/news/107050.html

相关文章

leetCode 162 !Find peak Element

参考资料:左程云算法课 思路:二分法 首先判断左右两端点是否是峰值, 如果是,则返回其下标,并结束;如果不是,说明左右两端点都小,峰值必然在余下(中间部分)取…

【Vue 第二十五章】自定义指令、权限按钮

除了 Vue 内置的一系列指令 (比如 v-model 或 v-show) 之外&#xff0c;Vue 还允许你注册自定义的指令 (Custom Directives)。 一个自定义指令由一个包含类似组件生命周期钩子的对象来定义。钩子函数会接收到指令所绑定元素作为其参数。 13.1 自定义局部指令 在 <script …

Netty 实现百万级连接服务的难点和优点分析总结

推送服务 还记得一年半前&#xff0c;做的一个项目需要用到 Android 推送服务。和 iOS 不同&#xff0c;Android 生态中没有统一的推送服务。Google 虽然有 Google Cloud Messaging &#xff0c;但是连国外都没统一&#xff0c;更别说国内了&#xff0c;直接被墙。 所以之前在…

「教程」微信小程序获取经纬度查询天气预警信息

使用天气预警API 可以帮助人们及时获取和了解天气预警信息&#xff0c;以便采取相应的措施来保护自身和财产。天气预警通常是由气象部门或相关机构发布的&#xff0c;用于提醒公众可能出现的极端天气或自然灾害&#xff0c;如暴雨、洪水、台风、暴风雪、雷暴、高温、低温、霜冻…

3.1. 字符串与StringBuilder

1. 字符串&#xff08;String&#xff09; 在Java中&#xff0c;字符串由String类表示。字符串是一系列字符的组合&#xff0c;用于表示文本数据。字符串是不可变的&#xff0c;这意味着一旦创建了一个字符串对象&#xff0c;就不能修改它的内容。 创建字符串 创建字符串的方…

java服务端如何接入WebSocket?

日常工作中&#xff0c;我们都是使用http请求&#xff0c;来进行前后交互&#xff0c;那么我们也会有使用websocket来进行前后交互的时候&#xff0c;那么它俩有什么区别呢&#xff1f; http和websocket区别 WebSocket是双向通信协议&#xff0c;模拟Socket协议&#xff0c;可…

如何把“困在”内网的数据释放,进行安全的流转传输呢?

互联网大时代&#xff0c;数据的生产使用与互联网紧密相关&#xff0c;但数据安全和网络安全却既有联系又互不相同。数据安全和网络安全的突出区别是核心主体不同&#xff0c;数据安全关注的数据全生命周期的安全&#xff0c;而网络安全则是侧重保障网络体系和网络环境的安全性…

网络安全基础免杀

1. 会话提升的几种方式2. armitage的熟悉3. handler生成监听器的方法4. 防止会话假死5. 控制台设置编码6. upx加壳7. msfvenom木马payload持久化8. msfvenom木马编码 正文 免杀1 1. 会话提升的几种方式 python -c "import pty;pty.spawn(/bin/bash);" 会话提升 se…