【详解】文本检测OCR模型的评价指标

news/2025/2/5 14:40:25/

关于文本检测OCR模型的评价指标

前言:网上关于评价标准乱七八糟的,有关于单词的,有关于段落的,似乎没见过谁解释一下常见论文中常用的评价指标具体是怎么计算的,比如DBNet,比如RCNN,这似乎好像默认大家都知道咋算了。

好吧,我不知道,我刚搞懂,做个笔记。

目录

  • 关于文本检测OCR模型的评价指标
    • 识别网络
    • 检测网络
    • 举个非常好的例子
      • 计算如下:
        • 检测算法指标计算:
        • 整体OCR系统指标计算:

识别网络

识别网络是最简单的,只有一个指标,就是准确率

检测正确的图像占总图像的比例
a c c u r a c y = 检测正确的小图数量 数据集中所有的小图数量 accuracy = \frac{检测正确的小图数量}{数据集中所有的小图数量} accuracy=数据集中所有的小图数量检测正确的小图数量

这里的图像指的是“小图”,如下所示:

请添加图片描述
请添加图片描述

识别结果就是文本,如果识别结果与标注一致,即为正样本。

检测网络

检测网络就是采用的二分类的最简单的混淆矩阵
有框没框,框的位置对不对,都需要设定阈值进行限定

在这里插入图片描述

Precision  = T P T P + F P \text { Precision }=\frac{T P}{T P+F P}  Precision =TP+FPTP
Recall  = T P T P + F N \text { Recall }=\frac{T P}{T P+F N}  Recall =TP+FNTP
F Score  = ( 1 + β 2 ) Precision  ⋅ Recall  β 2 ⋅ Precision  + Recall  ( β 系数一般取 1 ) F_{\text {Score }}=\left(1+\beta^2\right) \frac{\text { Precision } \cdot \text { Recall }}{\beta^2 \cdot \text { Precision }+ \text { Recall }} (\beta系数一般取1) FScore =(1+β2)β2 Precision + Recall  Precision  Recall β系数一般取1

两者和在一起组成OCR系统,以paddleOCR为例

官方指标评估代码与方法

PaddleOCR计算三个OCR检测相关的指标,分别是:Precision、Recall、Hmean(F-Score)。

PS:这里,Hmean与F-Score在PaddleOCR-V1中是分开的,Hmean特指检测位置部分的指标,F-Score特指OCR系统的指标,V2V3就没区分了,全部都是OCR系统的指标。

区别在于:TP的计算,OCR系统的指标需要:真实有框的位置,预测为有框,且识别结果正确。

依据论文:
在这里插入图片描述

举个非常好的例子

请添加图片描述
如上图所示:

  • 真实有框的数量为10个
  • 真实有框和预测有框对上的数量有7个:TP=7(绿蓝)
  • 但其中只有5个识别正确,所以:TP=5(红绿蓝)
  • 真实没框和预测有框的数量为2个:FP=2(纯蓝)
  • 真实有框但没有预测出来的有3个:FN=3(纯绿)

计算如下:

检测算法指标计算:

Precision  = T P T P + F P = 7 7 + 2 = 0.7778 \text { Precision }=\frac{T P}{T P+F P}=\frac{7}{7+2}=0.7778  Precision =TP+FPTP=7+27=0.7778
Recall  = T P T P + F N = 7 7 + 3 = 0.7 \text { Recall }=\frac{T P}{T P+F N}=\frac{7}{7+3}=0.7  Recall =TP+FNTP=7+37=0.7
F Score  = ( 1 + β 2 ) Precision  ⋅ Recall  β 2 ⋅ Precision  + Recall  = ( 2 ) 0.7778  ⋅ 0.7  1 ⋅ 0.7778  + 0.7  = 0.73685 F_{\text {Score }}=\left(1+\beta^2\right) \frac{\text { Precision } \cdot \text { Recall }}{\beta^2 \cdot \text { Precision }+ \text { Recall }}=\left(2\right) \frac{\text { 0.7778 } \cdot \text { 0.7 }}{1 \cdot \text { 0.7778 }+ \text {0.7 }}=0.73685 FScore =(1+β2)β2 Precision + Recall  Precision  Recall =(2)1 0.7778 +0.7  0.7778  0.7 =0.73685

整体OCR系统指标计算:

Precision  = T P T P + F P = 5 5 + 2 = 0.714 \text { Precision }=\frac{T P}{T P+F P}=\frac{5}{5+2}=0.714  Precision =TP+FPTP=5+25=0.714
Recall  = T P T P + F N = 5 5 + 3 = 0.625 \text { Recall }=\frac{T P}{T P+F N}=\frac{5}{5+3}=0.625  Recall =TP+FNTP=5+35=0.625
F Score  = ( 1 + β 2 ) Precision  ⋅ Recall  β 2 ⋅ Precision  + Recall  = ( 2 ) 0.714  ⋅ 0.625  1 ⋅ 0.714  + 0.625  = 0.66654 F_{\text {Score }}=\left(1+\beta^2\right) \frac{\text { Precision } \cdot \text { Recall }}{\beta^2 \cdot \text { Precision }+ \text { Recall }}=\left(2\right) \frac{\text { 0.714 } \cdot \text { 0.625 }}{1 \cdot \text { 0.714 }+ \text { 0.625 }}=0.66654 FScore =(1+β2)β2 Precision + Recall  Precision  Recall =(2)1 0.714 + 0.625  0.714  0.625 =0.66654


http://www.ppmy.cn/news/1067273.html

相关文章

基于YOLOV8模型和Kitti数据集的人工智能驾驶目标检测系统(PyTorch+Pyside6+YOLOv8模型)

摘要:基于YOLOV8模型和Kitti数据集的人工智能驾驶目标检测系统可用于日常生活中检测与定位车辆、汽车等目标,利用深度学习算法可实现图片、视频、摄像头等方式的目标检测,另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用…

Linux系统编程--文件编程--打开创建文件

创建文件需要包含以下3个头文件 #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> 打开、创建文件有以下3个API open的返回值——文件描述符&#xff08;索引作用&#xff09;&#xff0c;是一个小的非负整数 int open(const char*pathn…

用AI + Milvus Cloud搭建着装搭配推荐系统教程

以下函数定义了如何将图像转换为向量并插入到 Milvus Cloud 向量数据库中。代码会循环遍历所有图像。(注意:如果需要开启 Milvus Cloud 全新特性动态 Schema,需要修改代码。) 查询向量数据库 以下代码演示了如何使用输入图像查询 Milvus Cloud 向量数据库,以检索和上传…

【LeetCode-中等题】24. 两两交换链表中的节点

文章目录 题目方法一&#xff1a;递归方法二&#xff1a;三指针迭代 题目 方法一&#xff1a;递归 图解&#xff1a; 详细版 public ListNode swapPairs(ListNode head) {/*递归法:宗旨就是紧紧抓住原来的函数究竟返回的是什么?作用是什么即可其余的细枝末节不要细究,编译器…

macOS上开源免费的新闻阅读器SABnzbd

SABnzbd Mac版是一款运行在Mac平台上的开源新闻阅读器&#xff0c;这款阅读器界面简约、功效简单强大&#xff0c;使用SABnzbd时可以帮助使用Python语言编写&#xff0c;让用户使用usenet新闻组更便利&#xff0c;是你阅读新闻的好帮手&#xff01; SABnzbd具有以下主要特点&a…

LAMP架构介绍配置命令讲解

LAMP架构介绍配置命令讲解 一、LAMP架构介绍1.1概述1.2LAMP各组件的主要作用1.3各组件的安装顺序 二、编译安装Apache httpd服务---命令讲解1、关闭防火墙&#xff0c;将安装Apache所需的软件包传到/opt/目录下2、安装环境依赖包3、配置软件模块4、编译安装5、优化配置文件路径…

Java“牵手”天猫淘口令转换API接口数据,天猫API接口申请指南

天猫平台商品淘口令接口是开放平台提供的一种API接口&#xff0c;通过调用API接口&#xff0c;开发者可以获取天猫商品的标题、价格、库存、商品快递费用&#xff0c;宝贝ID&#xff0c;发货地&#xff0c;区域ID&#xff0c;快递费用&#xff0c;月销量、总销量、库存、详情描…

完美解决Ubuntu网络故障,连接异常,IP地址一直显示127.0.0.1

终端输入ifconfig显示虚拟机IP地址为127.0.0.1&#xff0c;具体输出内容如下&#xff1a; wxyubuntu:~$ ifconfig lo: flags73<UP,LOOPBACK,RUNNING> mtu 65536inet 127.0.0.1 netmask 255.0.0.0inet6 ::1 prefixlen 128 scopeid 0x10<host>loop txqueuelen …