本项目主要是基于Opencv完成的人脸识别的考勤系统
人脸检测器的5种实现方法
方法一:haar方法进行实现(以下是基于notebook进行编码)
# 步骤
# 1、读取包含人脸的图片
# 2.使用haar模型识别人脸
# 3.将识别结果用矩形框画出来
# 导入相关包
import cv2
import numpy as np
import matplotlib.pyplot as plt
# %matplotlib inline
plt.rcParams['figure.dpi'] = 200
# 读取图片
img = cv2.imread('./images/faces1.jpg')
# 查看大小
img.shape
plt.imshow(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))
# 构造haar检测器
face_detector = cv2.CascadeClassifier('./cascades/haarcascade_frontalface_default.xml')
# 转为灰度图
img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
plt.imshow(img_gray)
# 检测结果
detections = face_detector.detectMultiScale(img_gray)
type(detections)
# 打印
detections
#查看detections的数据结构
detections.shape
#解析结果
for (x,y,w,h) in detections:cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),5)
# 显示绘制结果
plt.imshow(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))
# 调节参数
# scaleFactor:调整图片尺寸
# minNeighbors:候选人脸数量
# minSize:最小人脸尺寸
# maxSize:最大人脸尺寸
img = cv2.imread('./images/faces2.jpg')
img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
detections = face_detector.detectMultiScale(img_gray,scaleFactor=1.2,minNeighbors=7,minSize=(10,10),maxSize=(100,100))
# 解析检测结果
for (x,y,w,h) in detections:print(w,h)cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),5)
plt.imshow(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))
方法二:hog方法进行实现(以下是基于notebook进行编码)
# 导入相关包
import cv2
import numpy as np
import matplotlib.pyplot as plt
# %matplotlib inline
plt.rcParams['figure.dpi'] = 200
# 读取照片
img = cv2.imread('./images/faces2.jpg')
# 显示照片
plt.imshow(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))
# 安装DLIB
import dlib
# 构造HOG人脸检测器
hog_face_detetor = dlib.get_frontal_face_detector()
# 检测人脸
# scale 类似haar的scaleFactor
detections = hog_face_detetor(img,1)
#查看一下detections的类型
type(detections)
# 打印一下
detections
len(detections)
# 解析矩形结果
for face in detections:x = face.left()y = face.top()r = face.right()b = face.bottom()cv2.rectangle(img,(x,y),(r,b),(0,255,0),5)
# 显示照片
plt.imshow(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))
方法三:CNN方法进行实现(以下是基于notebook进行编码)
# 导入相关包
import cv2
import numpy as np
import matplotlib.pyplot as plt
# %matplotlib inline
plt.rcParams['figure.dpi'] = 200
# 读取照片
img = cv2.imread('./images/faces2.jpg')
# 显示照片
plt.imshow(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))
# 安装DLIB
import dlib
# 构造CNN人脸检测器
cnn_face_detector = dlib.cnn_face_detection_model_v1('./weights/mmod_human_face_detector.dat')
# 检测人脸
detections = cnn_face_detector(img,1)
#查看detections的类型
type(detections)
# 解析矩形结果
for face in detections:x = face.rect.left()y = face.rect.top()r = face.rect.right()b = face.rect.bottom()#置信度c = face.confidenceprint(c)cv2.rectangle(img,(x,y),(r,b),(0,255,0),5)
# 显示照片
plt.imshow(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))
方法四:SSD方法进行实现(以下是基于notebook进行编码)
# 导入包
import cv2
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['figure.dpi']=200
# 读取照片
img = cv2.imread('./images/faces2.jpg')
# 展示
plt.imshow(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))
# deploy.prototxt.txt:https://github.com/opencv/opencv/tree/master/samples/dnn/face_detector
# res10_300x300_ssd_iter_140000.caffemodel:https://github.com/Shiva486/facial_recognition/blob/master/res10_300x300_ssd_iter_140000.caffemodel
# 加载模型
face_detector = cv2.dnn.readNetFromCaffe('./weights/deploy.prototxt.txt','./weights/res10_300x300_ssd_iter_140000.caffemodel')
# 原图尺寸
img_height = img.shape[0]
img_width = img.shape[1]
# 缩放至模型输入尺寸
img_resize = cv2.resize(img,(500,300))
# 图像转为blob(二进制)
img_blob = cv2.dnn.blobFromImage(img_resize,1.0,(500,300),(104.0, 177.0, 123.0))
# 输入
face_detector.setInput(img_blob)
# 推理
detections = face_detector.forward()
detections
# 查看大小
detections.shape
# 查看检测人脸数量
num_of_detections = detections.shape[2]
print(num_of_detections)
# 原图复制,一会绘制用
img_copy = img.copy()for index in range(num_of_detections):# 置信度detection_confidence = detections[0,0,index,2]# 挑选置信度if detection_confidence>0.15:# 位置locations = detections[0,0,index,3:7] * np.array([img_width,img_height,img_width,img_height])# 打印print(detection_confidence * 100)lx,ly,rx,ry = locations.astype('int')# 绘制cv2.rectangle(img_copy,(lx,ly),(rx,ry),(0,255,0),5)# 展示
plt.imshow(cv2.cvtColor(img_copy,cv2.COLOR_BGR2RGB))
方法五:MTCNN方法进行实现(以下是基于notebook进行编码)
# 导入包
import cv2
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['figure.dpi']=200
# 读取照片
img = cv2.imread('./images/faces2.jpg')
# MTCNN需要RGB通道顺序
img_cvt = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
# 展示
plt.imshow(img_cvt)
# 导入MTCNN
from mtcnn.mtcnn import MTCNN
# 加载模型
face_detetor = MTCNN()
# 检测人脸
detections = face_detetor.detect_faces(img_cvt)
for face in detections:(x, y, w, h) = face['box']cv2.rectangle(img_cvt, (x, y), (x + w, y + h), (0,255,0), 5)
plt.imshow(img_cvt)
# 读取照片
img = cv2.imread('./images/test.jpg')
img_cvt = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
# 展示
plt.imshow(img_cvt)# 检测人脸
detections = face_detetor.detect_faces(img_cvt)
for face in detections:(x, y, w, h) = face['box']cv2.rectangle(img_cvt, (x, y), (x + w, y + h), (0,255,0), 5)
plt.imshow(img_cvt)
人脸识别器的2种实现方法
方法一:Eigen_fisher_LBPH(基于notebook进行实现)
# 步骤
# 1、图片数据预处理
# 2、加载模型
# 3、训练模型
# 4、预测图片
# 5、评估测试数据集
# 6、保存模型
# 7、调用加载模型
# 导入包
import cv2
import numpy as np
import matplotlib.pyplot as plt
import dlib
%matplotlib inline
# 随机选一张图片
img_path = './yalefaces/train/subject01.glasses.gif'
# 读取GIF格式图片
cap = cv2.VideoCapture(img_path)
ret,img = cap.read()
img.shape
plt.imshow(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))
# 图片预处理
# img_list:numpy格式图片
# label_list:numpy格式的label
# cls.train(img_list,np.array(label_list))
# 为了减少运算,提高速度,将人脸区域用人脸检测器提取出来
# 构造hog人脸检测器
hog_face_detector = dlib.get_frontal_face_detector()
def getFaceImgLabel(fileName):# 读取图片cap = cv2.VideoCapture(fileName)ret,img = cap.read()# 转为灰度图img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)# 检测人脸detections = hog_face_detector(img,1)# 判断是否有人脸if len(detections) > 0:# 获取人脸区域坐标x = detections[0].left()y = detections[0].top()r = detections[0].right()b = detections[0].bottom()# 截取人脸img_crop = img[y:b,x:r]# 缩放解决冲突img_crop = cv2.resize(img_crop,(120,120))# 获取人脸labelidlabel_id = int(fileName.split('/')[-1].split('.')[0].split('subject')[-1])# 返回值return img_crop,label_idelse:return None,-1
img_path = './yalefaces/train/subject01.glasses.gif'
# 测试一张图片
img,label = getFaceImgLabel(img_path)
plt.imshow(cv2.cvtColor(img,cv2.COLOR_GRAY2RGB))
![在这里插入图片描述](https://img-blog.csdnimg.cn/d3a67f582e0d45ecbd797c5e17a25ed4.png)
# 遍历train文件夹,对所有图片同样处理
# 拼接成大的listimport glob
file_list =glob.glob('./yalefaces/train/*')
# 构造两个空列表
img_list = []
label_list = []for train_file in file_list:# 获取每一张图片的对应信息img,label = getFaceImgLabel(train_file)#过滤数据if label != -1:img_list.append(img)label_list.append(label)
# 查看label_list大小
len(label_list)
# 查看img_list大小
len(img_list)
# 构造分类器
face_cls = cv2.face.LBPHFaceRecognizer_create()
# cv2.face.EigenFaceRecognizer_create()
# cv2.face.FisherFaceRecognizer_create()
# 训练
face_cls.train(img_list,np.array(label_list))
# 预测一张图片
test_file = './yalefaces/test/subject03.glasses.gif'img,label = getFaceImgLabel(test_file)
#过滤数据
if label != -1:predict_id,distance = face_cls.predict(img)print(predict_id)
# 评估模型
file_list =glob.glob('./yalefaces/test/*')true_list = []
predict_list = []for test_file in file_list:# 获取每一张图片的对应信息img,label = getFaceImgLabel(test_file)#过滤数据if label != -1:predict_id,distance = face_cls.predict(img)predict_list.append(predict_id)true_list.append(label)
# 查看准确率
from sklearn.metrics import accuracy_score
accuracy_score(true_list,predict_list)
# 获取融合矩阵
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(true_list,predict_list)
# 可视化
import seaborn
seaborn.heatmap(cm,annot=True)
# 保存模型
face_cls.save('./weights/LBPH.yml')
# 调用模型
new_cls = cv2.face.LBPHFaceRecognizer_create()
new_cls.read('./weights/LBPH.yml')
# 预测一张图片
test_file = './yalefaces/test/subject03.glasses.gif'img,label = getFaceImgLabel(test_file)
#过滤数据
if label != -1:predict_id,distance = new_cls.predict(img)print(predict_id)
方法二:resnet(基于notebook进行实现)
# 步骤
# 1、图片数据预处理
# 2、加载模型
# 3、提取图片的特征描述符
# 4、预测图片:找到欧氏距离最近的特征描述符
# 5、评估测试数据集
# 导入包
import cv2
import numpy as np
import matplotlib.pyplot as plt
import dlib
# %matplotlib inline
plt.rcParams['figure.dpi'] = 200
# 获取人脸的68个关键点
# 人脸检测模型
hog_face_detector = dlib.get_frontal_face_detector()
# 关键点 检测模型
shape_detector = dlib.shape_predictor('./weights/shape_predictor_68_face_landmarks.dat')
# 读取一张测试图片
img = cv2.imread('./images/faces2.jpg')
# 检测人脸
detections = hog_face_detector(img,1)
for face in detections:# 人脸框坐标l,t,r,b = face.left(),face.top(),face.right(),face.bottom()# 获取68个关键点points = shape_detector(img,face)# 绘制关键点for point in points.parts():cv2.circle(img,(point.x,point.y),2,(0,255,0),1)# 绘制矩形框cv2.rectangle(img,(l,t),(r,b),(0,255,0),2)
plt.imshow(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))
# 面部特征描述符
# 人脸检测模型
hog_face_detector = dlib.get_frontal_face_detector()
# 关键点 检测模型
shape_detector = dlib.shape_predictor('./weights/shape_predictor_68_face_landmarks.dat')
# resnet模型
face_descriptor_extractor = dlib.face_recognition_model_v1('./weights/dlib_face_recognition_resnet_model_v1.dat')
# 提取单张图片的特征描述符,label
def getFaceFeatLabel(fileName):# 获取人脸labelidlabel_id = int(fileName.split('/')[-1].split('.')[0].split('subject')[-1])# 读取图片cap = cv2.VideoCapture(fileName)ret,img = cap.read()# 转为RGBimg = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)#人脸检测detections = hog_face_detector(img,1)face_descriptor = Nonefor face in detections:# 获取关键点points = shape_detector(img,face)# 获取特征描述符face_descriptor = face_descriptor_extractor.compute_face_descriptor(img,points)# 转为numpy 格式的数组face_descriptor = [f for f in face_descriptor]face_descriptor = np.asarray(face_descriptor,dtype=np.float64)face_descriptor = np.reshape(face_descriptor,(1,-1))return label_id,face_descriptor
# 测试一张图片
id1,fd1 = getFaceFeatLabel('./yalefaces/train/subject01.leftlight.gif')
fd1.shape
# 对train文件夹进行处理
import globfile_list =glob.glob('./yalefaces/train/*')
# 构造两个空列表
label_list = []
feature_list = Nonename_list = {}
index= 0
for train_file in file_list:# 获取每一张图片的对应信息label,feat = getFaceFeatLabel(train_file)#过滤数据if feat is not None: #文件名列表name_list[index] = train_file#label列表label_list.append(label)if feature_list is None:feature_list = featelse:# 特征列表feature_list = np.concatenate((feature_list,feat),axis=0)index +=1
len(label_list)
feature_list.shape
len(name_list)
name_list
feature_list[100]
# 计算距离
np.linalg.norm((feature_list[100]-feature_list[100]))
# 计算距离
np.linalg.norm((feature_list[100]-feature_list[101]))
# 计算距离
np.linalg.norm((feature_list[100]-feature_list[112]))
# 计算距离
np.linalg.norm((feature_list[100]-feature_list[96]))
# 计算一个特征描述符与所有特征的距离
np.linalg.norm((feature_list[0]-feature_list),axis=1)
# 计算一个特征描述符与所有特征的距离(排除自己)
np.linalg.norm((feature_list[0]-feature_list[1:]),axis=1)
# 寻找最小值索引
np.argmin(np.linalg.norm((feature_list[0]-feature_list[1:]),axis=1))
np.linalg.norm((feature_list[0]-feature_list[1:]),axis=1)[2]
name_list[1+2]
np.linalg.norm((feature_list[0]-feature_list[3]))
# 评估测试数据集file_list =glob.glob('./yalefaces/test/*')
# 构造两个空列表
predict_list = []
label_list= []
# 距离阈值
threshold = 0.5for test_file in file_list:# 获取每一张图片的对应信息label,feat = getFaceFeatLabel(test_file)# 读取图片cap = cv2.VideoCapture(test_file)ret,img = cap.read()img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)#过滤数据if feat is not None: # 计算距离distances = np.linalg.norm((feat-feature_list),axis=1)min_index = np.argmin(distances)min_distance = distances[min_index]if min_distance < threshold:# 同一人predict_id = int(name_list[min_index].split('/')[-1].split('.')[0].split('subject')[-1])else:predict_id = -1predict_list.append(predict_id)label_list.append(label)cv2.putText(img,'True:'+str(label),(10,30),cv2.FONT_HERSHEY_COMPLEX_SMALL,1,(0,255,0))cv2.putText(img,'Pred:'+str(predict_id),(10,50),cv2.FONT_HERSHEY_COMPLEX_SMALL,1,(0,255,0))cv2.putText(img,'Dist:'+str(min_distance),(10,70),cv2.FONT_HERSHEY_COMPLEX_SMALL,1,(0,255,0))# 显示plt.figure()plt.imshow(img)
# 公式评估
from sklearn.metrics import accuracy_score
accuracy_score(label_list,predict_list)
人脸考勤机的整体项目(pycharm上运行)
项目整体架构
导入包
# 导入包
import cv2
import numpy as np
import dlib
import time
import csv
人脸注册方法
# 人脸注册方法
def faceRegister(label_id=1, name='enpei', count=3, interval=3):"""label_id:人脸IDName:人脸姓名count:采集数量interval:采集间隔时间"""# 检测人脸# 获取68个关键点# 获取特征描述符cap = cv2.VideoCapture(0)# 获取长宽width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))# 构造人脸检测器hog_face_detector = dlib.get_frontal_face_detector()# 关键点检测器shape_detector = dlib.shape_predictor('./weights/shape_predictor_68_face_landmarks.dat')# 特征描述符face_descriptor_extractor = dlib.face_recognition_model_v1('./weights/dlib_face_recognition_resnet_model_v1.dat')# 开始时间start_time = time.time()# 执行次数collect_count = 0# CSV Writerf = open('./data/feature.csv', 'a', newline="")csv_writer = csv.writer(f)while True:ret, frame = cap.read()# 缩放frame = cv2.resize(frame, (width // 2, height // 2))# 镜像frame = cv2.flip(frame, 1)# 转为灰度图frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)# 检测人脸detections = hog_face_detector(frame, 1)# 遍历人脸for face in detections:# 人脸框坐标l, t, r, b = face.left(), face.top(), face.right(), face.bottom()# 获取人脸关键点points = shape_detector(frame, face)for point in points.parts():cv2.circle(frame, (point.x, point.y), 2, (0, 255, 0), -1)# 矩形人脸框cv2.rectangle(frame, (l, t), (r, b), (0, 255, 0), 2)# 采集:if collect_count < count:# 获取当前时间 now = time.time()# 时间间隔if now - start_time > interval:# 获取特征描述符face_descriptor = face_descriptor_extractor.compute_face_descriptor(frame, points)# 转为列表face_descriptor = [f for f in face_descriptor]# 写入CSV 文件line = [label_id, name, face_descriptor]csv_writer.writerow(line)collect_count += 1start_time = nowprint("采集次数:{collect_count}".format(collect_count=collect_count))else:passelse:# 采集完毕print('采集完毕')return# 显示画面cv2.imshow('Face attendance', frame)# 退出条件if cv2.waitKey(10) & 0xFF == ord('q'):breakf.close()cap.release()cv2.destroyAllWindows()
获取csv中的特征
# 获取并组装CSV文件中特征
def getFeatureList():# 构造列表label_list = []name_list = []feature_list = Nonewith open('./data/feature.csv', 'r') as f:csv_reader = csv.reader(f)for line in csv_reader:label_id = line[0]name = line[1]label_list.append(label_id)name_list.append(name)# string 转为listface_descriptor = eval(line[2])# face_descriptor = np.asarray(face_descriptor, dtype=np.float64)face_descriptor = np.reshape(face_descriptor, (1, -1))if feature_list is None:feature_list = face_descriptorelse:feature_list = np.concatenate((feature_list, face_descriptor), axis=0)return label_list, name_list, feature_list
# 人脸识别
# 1、实时获取视频流中人脸的特征描述符
# 2、将它与库里特征做距离判断
# 3、找到预测的ID、NAME
# 4、考勤记录存进CSV文件:第一次识别到存入或者隔一段时间存def faceRecognizer(threshold=0.5):cap = cv2.VideoCapture(0)# 获取长宽width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))# 构造人脸检测器hog_face_detector = dlib.get_frontal_face_detector()# 关键点检测器shape_detector = dlib.shape_predictor('./weights/shape_predictor_68_face_landmarks.dat')# 特征描述符face_descriptor_extractor = dlib.face_recognition_model_v1('./weights/dlib_face_recognition_resnet_model_v1.dat')# 读取特征label_list, name_list, feature_list = getFeatureList()# 字典记录人脸识别记录recog_record = {}# CSV写入f = open('./data/attendance.csv', 'a', newline="")csv_writer = csv.writer(f)# 帧率信息fps_time = time.time()while True:ret, frame = cap.read()# 缩放frame = cv2.resize(frame, (width // 2, height // 2))# 镜像frame = cv2.flip(frame, 1)# 检测人脸detections = hog_face_detector(frame, 1)# 遍历人脸for face in detections:# 人脸框坐标l, t, r, b = face.left(), face.top(), face.right(), face.bottom()# 获取人脸关键点points = shape_detector(frame, face)# 矩形人脸框cv2.rectangle(frame, (l, t), (r, b), (0, 255, 0), 2)# 获取特征描述符face_descriptor = face_descriptor_extractor.compute_face_descriptor(frame, points)# 转为列表face_descriptor = [f for f in face_descriptor]# 计算与库的距离face_descriptor = np.asarray(face_descriptor, dtype=np.float64)distances = np.linalg.norm((face_descriptor - feature_list), axis=1)# 最短距离索引min_index = np.argmin(distances)# 最短距离min_distance = distances[min_index]if min_distance < threshold:predict_id = label_list[min_index]predict_name = name_list[min_index]cv2.putText(frame, predict_name + str(round(min_distance, 2)), (l, b + 40),cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 255, 0), 1)now = time.time()need_insert = False# 判断是否识别过if predict_name in recog_record:# 存过# 隔一段时间再存if now - recog_record[predict_name] > 3:# 超过阈值时间,再存一次need_insert = Truerecog_record[predict_name] = nowelse:# 还没到时间passneed_insert = Falseelse:# 没有存过recog_record[predict_name] = now# 存入CSV文件need_insert = Trueif need_insert:time_local = time.localtime(recog_record[predict_name])# 转换格式time_str = time.strftime("%Y-%m-%d %H:%M:%S", time_local)line = [predict_id, predict_name, min_distance, time_str]csv_writer.writerow(line)print('{time}: 写入成功:{name}'.format(name=predict_name, time=time_str))else:print('未识别')# 计算帧率now = time.time()fps = 1 / (now - fps_time)fps_time = nowcv2.putText(frame, "FPS: " + str(round(fps, 2)), (20, 40), cv2.FONT_HERSHEY_COMPLEX_SMALL, 2, (0, 255, 0), 1)# 显示画面cv2.imshow('Face attendance', frame)# 退出条件if cv2.waitKey(10) & 0xFF == ord('q'):breakf.close()cap.release()cv2.destroyAllWindows()
项目整体代码(attendance.py)
"""
人脸考勤
人脸注册:将人脸特征存进feature.csv
人脸识别:将检测的人脸特征与CSV中人脸特征作比较,如果比中的把考勤记录写入 attendance.csv
"""# 导入包
import cv2
import numpy as np
import dlib
import time
import csv# 人脸注册方法
def faceRegister(label_id=1,name='enpei',count=3,interval=3):"""label_id:人脸IDName:人脸姓名count:采集数量interval:采集间隔时间"""# 检测人脸# 获取68个关键点# 获取特征描述符cap = cv2.VideoCapture(0)# 获取长宽width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))# 构造人脸检测器hog_face_detector = dlib.get_frontal_face_detector()# 关键点检测器shape_detector = dlib.shape_predictor('./weights/shape_predictor_68_face_landmarks.dat')# 特征描述符face_descriptor_extractor = dlib.face_recognition_model_v1('./weights/dlib_face_recognition_resnet_model_v1.dat')# 开始时间start_time = time.time()# 执行次数collect_count = 0# CSV Writerf = open('./data/feature.csv','a',newline="")csv_writer = csv.writer(f)while True:ret,frame = cap.read()# 缩放frame = cv2.resize(frame,(width//2,height//2))# 镜像frame = cv2.flip(frame,1)# 转为灰度图frame_gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)# 检测人脸detections = hog_face_detector(frame,1)# 遍历人脸for face in detections:# 人脸框坐标l,t,r,b = face.left(),face.top(),face.right(),face.bottom()# 获取人脸关键点points = shape_detector(frame,face)for point in points.parts():cv2.circle(frame,(point.x,point.y),2,(0,255,0),-1)# 矩形人脸框cv2.rectangle(frame,(l,t),(r,b),(0,255,0),2)# 采集:if collect_count < count:# 获取当前时间 now = time.time()# 时间间隔if now -start_time > interval:# 获取特征描述符face_descriptor = face_descriptor_extractor.compute_face_descriptor(frame,points)# 转为列表face_descriptor = [f for f in face_descriptor]# 写入CSV 文件line = [label_id,name,face_descriptor]csv_writer.writerow(line)collect_count +=1start_time = nowprint("采集次数:{collect_count}".format(collect_count= collect_count))else:passelse:# 采集完毕print('采集完毕')return # 显示画面cv2.imshow('Face attendance',frame)# 退出条件if cv2.waitKey(10) & 0xFF == ord('q'):breakf.close()cap.release()cv2.destroyAllWindows() # 获取并组装CSV文件中特征
def getFeatureList():# 构造列表label_list = []name_list = []feature_list = Nonewith open('./data/feature.csv','r') as f:csv_reader = csv.reader(f)for line in csv_reader:label_id = line[0]name = line[1]label_list.append(label_id)name_list.append(name)# string 转为listface_descriptor = eval(line[2])# face_descriptor = np.asarray(face_descriptor,dtype=np.float64)face_descriptor = np.reshape(face_descriptor,(1,-1))if feature_list is None:feature_list = face_descriptorelse:feature_list = np.concatenate((feature_list,face_descriptor),axis=0)return label_list,name_list,feature_list# 人脸识别
# 1、实时获取视频流中人脸的特征描述符
# 2、将它与库里特征做距离判断
# 3、找到预测的ID、NAME
# 4、考勤记录存进CSV文件:第一次识别到存入或者隔一段时间存def faceRecognizer(threshold = 0.5):cap = cv2.VideoCapture(0)# 获取长宽width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))# 构造人脸检测器hog_face_detector = dlib.get_frontal_face_detector()# 关键点检测器shape_detector = dlib.shape_predictor('./weights/shape_predictor_68_face_landmarks.dat')# 特征描述符face_descriptor_extractor = dlib.face_recognition_model_v1('./weights/dlib_face_recognition_resnet_model_v1.dat')# 读取特征label_list,name_list,feature_list = getFeatureList()# 字典记录人脸识别记录recog_record = {}# CSV写入f = open('./data/attendance.csv','a',newline="")csv_writer = csv.writer(f)# 帧率信息fps_time = time.time()while True:ret,frame = cap.read()# 缩放frame = cv2.resize(frame,(width//2,height//2))# 镜像frame = cv2.flip(frame,1)# 检测人脸detections = hog_face_detector(frame,1)# 遍历人脸for face in detections:# 人脸框坐标l,t,r,b = face.left(),face.top(),face.right(),face.bottom()# 获取人脸关键点points = shape_detector(frame,face)# 矩形人脸框cv2.rectangle(frame,(l,t),(r,b),(0,255,0),2)# 获取特征描述符face_descriptor = face_descriptor_extractor.compute_face_descriptor(frame,points)# 转为列表face_descriptor = [f for f in face_descriptor]# 计算与库的距离face_descriptor = np.asarray(face_descriptor,dtype=np.float64)distances = np.linalg.norm((face_descriptor-feature_list),axis=1)# 最短距离索引min_index = np.argmin(distances)# 最短距离min_distance = distances[min_index]if min_distance < threshold:predict_id = label_list[min_index]predict_name = name_list[min_index]cv2.putText(frame,predict_name + str(round(min_distance,2)),(l,b+40),cv2.FONT_HERSHEY_COMPLEX_SMALL,1,(0,255,0),1)now = time.time()need_insert = False# 判断是否识别过if predict_name in recog_record:# 存过# 隔一段时间再存if now - recog_record[predict_name] > 3:# 超过阈值时间,再存一次need_insert =Truerecog_record[predict_name] = nowelse:# 还没到时间passneed_insert =Falseelse:# 没有存过recog_record[predict_name] = now# 存入CSV文件need_insert =Trueif need_insert :time_local = time.localtime(recog_record[predict_name])# 转换格式time_str = time.strftime("%Y-%m-%d %H:%M:%S",time_local)line = [predict_id,predict_name,min_distance,time_str]csv_writer.writerow(line)print('{time}: 写入成功:{name}'.format(name =predict_name,time = time_str ))else:print('未识别')# 计算帧率now = time.time()fps = 1/(now - fps_time)fps_time = nowcv2.putText(frame,"FPS: "+str(round(fps,2)),(20,40),cv2.FONT_HERSHEY_COMPLEX_SMALL,2,(0,255,0),1)# 显示画面cv2.imshow('Face attendance',frame)# 退出条件if cv2.waitKey(10) & 0xFF == ord('q'):breakf.close()cap.release()cv2.destroyAllWindows() # faceRegister(label_id=1,name='enpei',count=3,interval=3)# faceRecognizer(threshold = 0.5)