扎实写完这篇博客

news/2024/11/30 3:50:55/

@(论文阅读)

作者自述:到了新的实验室,原本的实验方向发生了巨大的改变,对自动驾驶和车联网一头雾水,所以从综述入手,了解轨迹预测任务的头尾,以及对于现阶段的研究点做出初步的统计和积累,为后续工作的展开奠定坚实的基础,希望能够为车联网事业的发展狠狠地贡献一把力量。

A survey on Trajectory-Prediction Methods for Autonomous Driving

Authors : Yanjun Huang et al.
**Insititute: ** Tongji University, Automotive Studies school.

Abstract:

为了在动态变化的道路上安全驾驶,自动驾驶汽车(车联网汽车)需要预测未来的运行轨迹,并且需要判断周边车次、行人等道路交通参与者的运行轨迹。这也是为什么很多学者致力于轨迹预测研究,以及众多方法涌现出来的原因。这篇文章收集了近二十年的自动驾驶领域中的关于轨迹预测的可比较的和可解释性的工作回顾。以问题的公式化和算法分类开头,展开基于物理学、经典的机器学习方法、深度学习、强化学习方法的讨论,并且对现有方法做实验性介绍和分析,并对每种方法的强弱点做一个讨论,指明未来的研究方向!

Introduction

It belongs to me!!!

Autonomous driving is attracting more and more attention from both academia and industial sectors, because of its promising merits (potentials)to solve many long-term transportation challenges related to safety, congestion, energy-saving, and so on.

In recent years, we have witnessed the rapid development of perception, planning and control systems for autonomous vehicels(AVs).

However, mass production of AVs will become true only if the safety of autonomous driving is verified.

To further improve the safery, one of the most key technologies is AVs sholuld be able to predict the future states of the surrounding environment in real time like human drivers.

When a human drives a vehicle, he usually observes the surrounding traffic participants and predicts their future states before initiating a new driving maneuver, e.g., acceleration or lane change. (could alternate to the deceleration, turns).

Future states of traffic participants can be represented by future trajectories, utilized to detect potential dangers in advance and used in designing decision-making or planning algorithm, as hown in Fig.1.

However, due to diverse maneuvers of traffic participants, the complex interaction between traffic participants and environments,
the uncertainty of sensory information, the computation burdens and computing time requirements of AVs,
how to accurately predict future trajectories of traffic participants is drawing much attention and becoming one of the key points to improve the safety of autonomous driving.
here is too much / partially theroies or ideal, compare to reality, sometimes, human could hardly to determine the situation of the front car always.

Many researchers are devoted to the field of trajectory prediction and propose a number of useful methods.
Several review papers have discussed a part of trajectory-prediction techniques. list:
Lefevre et al. present a survey on existing methods of motion(moving) prediction and risk assessment for AV’s before 2014. Most of these methods are classical but out of date .
This sentence mean the old means could not get good result, but not the impossible of the old methods could improve the sotas, I think it is more suitable for this result that the old methods and theories don’t attract reaseachers because of the unsatisified performance.

Mohammad et al. review behavior-prediction methods at intersections based on drivers’ maneuvers.

A review of deep learning-based approaches focusing on vehicel behavior analysis is presented in 2019 by Mozaffari et al. which describes different criteria to classify only a part of popular methods based on input and output information, and it does not involve some latest published methods.

Two recent publications, similarly focus on trajectory prediction for AVs, but the one provides a review about tracking and trjectory predictionm which only contains methods using deep learning and methods sing stochastic techniquesm adn the other only presents deep learning methods.

Other two surveys use vision information to detect anomaly behavior and two survey human motion prediction, shich is obviously different from the topic of this study.

Thus, this sirvey comprehensively reviews trajectory-prediction methods for AVs proposed over the last two decades. We select heuristic and state-of-the-art trajectory prediction methods for a period of time to compare and summarize.

Note that the historical trajectory information used in prediction methods can be obtained from the perception system [] and vehicle to everything V2X [] and vision-based methods [] are not the focus of this review.
这里说了,感知系统、V2X和基于视觉的工作都不在这里,都给了相应的参考文献,毕竟是个大方向,所以综述也只能偏一个小点来写。
大体的模型分类图

Since traffic participants for instance surrounding vehicles, directly impact the ego vehicle(auto driving), this paper mainly focuses on trajectory-prediction methods for vehicles.

As shown, in Fig.2, this paper will review physics-based methods, classical machine learning-based methods, deep learning-based methods, and reinforcement learning-based methods, respectively. The main contributions of this work can be summarized as follows:

主要贡献如下:
1、The popular trajectory prediction methods for AVs based on physics, classic machine learning, deep learning, and reinforcement learning are elaborately reviewed.
2、The metrics and datasets for evaluating the performance of methods are detailed summarized.
3、The pros and cons(advantage and disadvantage)


http://www.ppmy.cn/news/1057230.html

相关文章

Apache StreamPark系列教程第二篇——项目打包和开发

一、项目打包 项目依赖maven、jdk8.0、前端(node、npm) //下载代码 git clone//maven打包相关内容 mvn -N io.takari:maven:wrapper //前端打包相关内容 curl -sL https://rpm.nodesource.com/setup_16.x | bash - yum -y install nodejs npm -v npm install -g pnpm默认是h2…

视频集中存储/云存储平台EasyCVR国标GB28181协议接入的报文交互数据包分析

安防视频监控/视频集中存储/云存储/磁盘阵列EasyCVR平台可拓展性强、视频能力灵活、部署轻快,可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等,以及支持厂家私有协议与SDK接入,包括海康Ehome、海大宇等设备的SDK等。视频汇聚融合管理…

【C语言】扫雷游戏(可展开)——超细教学

🚩纸上得来终觉浅, 绝知此事要躬行。 🌟主页:June-Frost 🚀专栏:C语言 🔥该篇将运用数组来实现 扫雷游戏。 目录: 🌟思路框架测试游戏 🌟测试部分函数实现&am…

确定了,TikTok将于9月12日正式关闭美国半闭环

外媒报道称,TikTok已对其官网的常见问题页面进行了更新。消息显示,其在美国和英国市场运营的半封闭模式将于9月12日正式结束,并将全力推进TikTok闭环小店业务。尽管我们早在本月初就获悉了这一消息,但实际得知后仍不免有些感慨。曾…

伦敦金短线好还是长线好

在伦敦金投之中,长期有一个争论很久的问题,那就是伦敦金投资究竟是长线好还是短线好?不同的投资者对这个问题有不同的看法,一般认为,伦敦金投资比较适合短线交易。笔者也将讨论这个问题,看看伦敦金投资是不…

上篇——税收大数据应用研究

财税是国家治理的基础和重要支柱,税收是国家治理体系的重要组成部分。我们如何利用税收数据深入挖掘包含的数据价值,在进行数据分析,提升税收治理效能,推进税收现代化。 1. 定义与特点 对于“大数据”(Big data&#…

Linux环境下远程访问SVN服务:SVN内网穿透的详细配置与操作指南

文章目录 前言1. Ubuntu安装SVN服务2. 修改配置文件2.1 修改svnserve.conf文件2.2 修改passwd文件2.3 修改authz文件 3. 启动svn服务4. 内网穿透4.1 安装cpolar内网穿透4.2 创建隧道映射本地端口 5. 测试公网访问6. 配置固定公网TCP端口地址6.1 保留一个固定的公网TCP端口地址6…

解决生僻字,中兴新支点操作系统通过GB 18030-2022《中文编码字符集》认证

您认识上图中的这个字吗? 上面一个“鸟”,下面一个“甲”,这个字读“nia(四声)”。它是云南丽江傈僳族中一支氏族的姓氏。这个氏族以鸟为图腾。因信息系统中无法输入显示“nia”字,氏族里近700人不得不妥协…