Datawhale AI夏令营 - 用户新增预测挑战赛 | 学习笔记

news/2024/11/17 22:41:56/

数据分析与可视化

为了拟合出更好的结果就要了解训练数据之间的相互关系,进行数据分析是必不可少的一步

导入必要的库

# 导入库
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

pandas库是一个强大的分析结构化数据的python库是Pythonopen in new window的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据。

 

numpy是python中科学计算的基础库,提供多维数组对象,各种派生对象(如掩码数组和矩阵),以及用于数组快速操作的各种API,有包括数学、逻辑、形状操作、排序、选择、输入输出、离散傅立叶变换、基本线性代数,基本统计运算和随机模拟等等。

 

可视化的图标能便于分析数据

matplotlib是一个python 2D绘图库,它以多种硬拷贝格式和跨平台的交互式环境生成出版物质量的图形。

 

seaborn 是一个基于matplotlib进行进行二次封装的绘图库,它也绘制更为集成、复杂的图表。

 

 

绘制数据热力图

a698f6138368400e9dd85db4cba481cf.jpg

 

# 相关性热力图
sns.heatmap(train_data.corr().abs(), cmap='YlOrRd')

上面是教程给的代码,下面是自己尝试调整了一部分参数后的

# 相关性热力图
fig, ax = plt.subplots(figsize=(18,18))#设置画布大小
sns.heatmap(train_data.corr(),square=True, annot=True,     vmax=1, vmin=0,annot_kws={'size': 5},linewidths=0.3,     # 控制每个小方格之间的间距linecolor="white",   # 控制分割线的颜色cmap="RdBu_r")

绘制直方图

# x7分组下标签均值
sns.barplot(x='x7', y='target', data=train_data)

模型交叉验证

交叉验证(Cross-Validation)是机器学习中常用的一种模型评估方法,用于评估模型的性能和泛化能力。

 

简单来说就是通过数据评估不同模型,避免过拟合或欠拟合,从而可以找到性能最优的模型。

 

上面的代码验证评估了四个模型,通过输出结果,其实不难发现,树模型的macro F1效果好

一般的,随机森林(RandomForestClassifier)效果比决策树(DecisionTreeClassifier)好一些,本题经过一定特征工程后亦是如此。

特征工程

通过进行特征工程,我们可以优化训练数据,使得得到的模型的性能提升

教程给了如上的特征处理,经过训练,发现common_ts_day与x1_mean,x2_mean是其中对提升精度影响比较大的特征

数据清洗 -- 缺失值与异常值处理

训练模型时遇到报错:ValueError:Input contains NaN, infinity or a value too large for dtype('float64').

处理异常值(以训练集 train_data 为例):

1.检查特征类型

print(train_data.dtypes())    #打印训练集特征类型

2.针对不符合类型训练时抛弃

train_data.drop(['udmap', 'common_ts', 'uuid')  #训练时

3.无穷值处理

#检查是否有无穷数据
print(np.isfinite(train_data).all())
#或
print(np.isinf(train_data).all())#处理
train_inf = np.isinf(train_data)  #提取
train_data[train_inf] = 0  #替换

在使用 dropna 时遇到删除带有缺失值行数据失败的情况:

这里是因为 NaN 是一个空字符串, 但 dropna 并不会将空字符串当作缺失值处理, 所以没能成功删除

同时,因为删除带有缺失值的行会改变行数,处理测试集 test_data 后会导致提交平台检测出错误

所以采用填充处理

最简单的是用 0 填充

 train_data.fillna(0)  #将 NaN 替换成 0

也可以使用 replace()

train_data.replace("0",np.nan,inplace=True) #将缺失值替换成 0
#如果在其他项目中这里也可以替换成 "nan" 然后使用 dropna 

缺失值填补有很多方法

1.人工填补 2.平均数填补 3.众数填补 4.中位数填补 5.临近数填补

等等等等,还可以采用一些算法进行填补

1.独热编码(One-HotEncoding)

可以扩充特征,采用N位状态寄存器来对N个可能的取值进行编码,每个状态都由独立的寄存器来表示

baseline 中的函数 udmap_onethot :

# 定义函数 udmap_onethot,用于将 'udmap' 列进行 One-Hot 编码
def udmap_onethot(d):v = np.zeros(9)         # 创建一个长度为 9 的零数组if d == 'unknown':      # 如果 'udmap' 的值是 'unknown'return v        # 返回零数组d = eval(d)         # 将 'udmap' 的值解析为一个字典for i in range(1, 10):          # 遍历 'key1' 到 'key9', 注意, 这里不包括10本身if 'key' + str(i) in d:     # 如果当前键存在于字典中v[i-1] = d['key' + str(i)]  # 将字典中的值存储在对应的索引位置上return v    # 返回 One-Hot 编码后的数组

对星期进行 One-Hot 编码 :

# 定义函数 week_onethot,用于将 'common_ts_week' 列进行 One-Hot 编码
def week_onethot(d):v = np.zeros(7)if d == 'Sunday':v[0] = 1elif d == 'Monday':v[1] = 1elif d == 'Tuesday':v[2] = 1elif d == 'Wednesday':v[3] = 1elif d == 'Thursday':v[4] = 1elif d == 'Friday':v[5] = 1elif d == 'Saturday':v[6] = 1return v 

2.特征二元化

将数值型的属性转换为布尔值的属性,设定一个阈值或条件划分属性值为0或1

简单来说就是将特征分成两部分,用 1 / 0 区分是否满足某条件

baseline 中的 udmap_isunknown :

# 编码 udmap 是否为空
train_data['udmap_isunknown'] = (train_data['udmap'] == 'unknown').astype(int)
test_data['udmap_isunknown'] = (test_data['udmap'] == 'unknown').astype(int)

判断 x7 是否为 1 :

# 特征 x7 是否为 1 
train_data['x7_is1'] = train_data['x7'].apply(lambda d : d == 1)
test_data['x7_is1'] = test_data['x7'].apply(lambda d : d == 1)

 

 

 

 

 

 

 


http://www.ppmy.cn/news/1055646.html

相关文章

面试热题(复原ip地址)

有效 IP 地址 正好由四个整数(每个整数位于 0 到 255 之间组成,且不能含有前导 0),整数之间用 . 分隔。 例如:"0.1.2.201" 和 "192.168.1.1" 是 有效 IP 地址,但是 "0.011.255.24…

网络安全—黑客技术(学习笔记)

1.网络安全是什么 网络安全可以基于攻击和防御视角来分类,我们经常听到的 “红队”、“渗透测试” 等就是研究攻击技术,而“蓝队”、“安全运营”、“安全运维”则研究防御技术。 2.网络安全市场 一、是市场需求量高; 二、则是发展相对成熟…

LeetCode面试经典150题(day 1)

LeetCode是一个免费刷题的一个网站,想要通过笔试的小伙伴可以每天坚持刷两道算法题。 接下来,每天我将更新LeetCode面试经典150题的其中两道算法题,一边巩固自己,一遍希望能帮助到有需要的小伙伴。 88.合并两个有序数组 给你两个…

字节跳动 从需求到上线全流程 软件工程流程 需求评估 MVP

走进后端开发流程 整个课程会带大家先从理论出发,思考为什么有流程 大家以后工作的团队可能不一样,那么不同的团队也会有不同的流程,这背后的逻辑是什么 然后会带大家按照走一遍从需求到上线的全流程,告诉大家在流程的每个阶段&am…

Java 计算文本相似度

接受一个字符串和一个字符串列表作为参数的 Java 方法,用于计算两个字符串之间的相似度。 方法 import java.util.HashSet; import java.util.List; import java.util.Set;public class StringSimilarity {/*** 计算两个字符串之间的相似度* param str1 第一个字符…

前端工程化概述

软件工程定义:将工程方法系统化地应用到软件开发中 前端发展历史 前端工程化的发展历史可以追溯到互联网的早期阶段,随着前端技术的不断演进和互联网应用的复杂化,前端工程化也逐渐成为了前端开发的重要领域。以下是前端工程化的主要发展里程…

2023年7月天猫糕点市场数据分析(天猫数据怎么看)

烘焙食品行业是近几年食品领域比较火热的赛道之一,随着居民饮食结构的变化,人均消费水平的上升,蛋糕、面包等烘焙糕点越发成为消费者饮食的重要组成部分。同时,在烘焙糕点市场中,老品牌不断推新迭变,新品牌…

朴素贝叶斯==基于样本特征来预测样本属于的类别y

目录 朴素贝叶斯基于样本特征来预测样本属于的类别y 朴素贝叶斯算法的基本概念与核心思想 假设两个特征维度之间是相互独立的 拉普拉斯平滑增加出现次数保证0不出现 ​编辑 基于样本特征来预测样本属于的类别y 什么是拉普拉斯平滑 朴素贝叶斯基于样本特征来预测样本属于的…