【力扣】746. 使用最小花费爬楼梯
给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。
请你计算并返回达到楼梯顶部的最低花费。
示例 1:
输入:cost = [10,15,20]
输出:15
解释:
你将从下标为 1 的台阶开始。
支付 15 ,向上爬两个台阶,到达楼梯顶部。
总花费为 15 。
示例 2:
输入:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:你将从下标为 0 的台阶开始。
支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
支付 1 ,向上爬一个台阶,到达楼梯顶部。
总花费为 6 。
提示:
2 <= cost.length <= 1000
0 <= cost[i] <= 999
题解
- 确定 dp 数组以及下标的含义
dp[i] 的定义为:到达第 i 台阶所花费的最少体力为 dp[i] 。 - 确定递推公式
有两个途径得到 dp[i],一个是 dp[i-1] ,一个是 dp[i-2]
dp[i - 1] 跳到 dp[i] 需要花费 dp[i - 1] + cost[i - 1]
dp[i - 2] 跳到 dp[i] 需要花费 dp[i - 2] + cost[i - 2]
选最小的,状态转移方程 dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]); - dp 数组如何初始化
选择从下标为 0 或下标为 1 的台阶开始爬楼梯,dp[0] = 0,dp[1] = 0 - 确定遍历顺序
从前向后遍历 - 举例推导 dp 数组(打印 dp 数组)
class Solution {public int minCostClimbingStairs(int[] cost) {int len = cost.length;int[] dp = new int[len + 1];// 从下标为 0 或下标为 1 的台阶开始,没跳没费用dp[0] = 0;dp[1] = 0;// 遍历for (int i = 2; i <= len; i++) {dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);}return dp[len];}
}