Java学习笔记39

news/2024/10/29 3:23:00/

Java笔记39

反射机制

静态/动态语言

  • 动态语言
    • 是一类在运行时可以改变其结构的语言:例如新的函数、对象、甚至代码可以被引进,已有的函数可以被删除或是其他结构上的变化。通俗点说就是在运行时代码可以根据某些条件改变自身结构。
    • 主要动态语言:Object-C、C#、JavaScript、PHP、Python等。
  • 静态语言
    • 与动态语言相对应的,运行时结构不可变的语言就是静态语言。如:Java、C、C++。
    • Java不是动态语言,但 Java可以称之为“准动态语言”。即 Java有一定的动态性,我们可以利用反射机制获得类似动态语言的特性。Java的动态性让编程的时候更加灵活!

Java Reflection(反射)

  • Reflection(反射)是 Java被视为动态语言的关键,反射机制允许程序在执行期借助于 Reflection API 取得任何类的内部信息,并能直接操作任意对象的内部属性及方法。

      Class c = Class.forName("java.lang.String")
    
  • 加载完类之后,在堆内存的方法区中就产生了一个Class类型的对象(一个类只有一个Class对象),这个对象就包含了完整的类的结构信息。我们可以通过这个对象看到类的结构。这个对象就像一面镜子,透过这个镜子看到类的结构,所以,我们形象的称之为:反射。

在这里插入图片描述

  • 下面我们来写一段代码,来帮助我们理解什么是反射:
package com.clown.reflection;//什么叫反射
public class Test02 {public static void main(String[] args) throws ClassNotFoundException {//通过反射获取类的 Class对象Class c1 = Class.forName("com.clown.reflection.user");System.out.println(c1);Class c2 = Class.forName("com.clown.reflection.user");Class c3 = Class.forName("com.clown.reflection.user");Class c4 = Class.forName("com.clown.reflection.user");//一个类在内存中只有一个 Class对象//一个类被加载后,类的整个结构都会被封装在 Class对象中System.out.println(c2.hashCode());System.out.println(c3.hashCode());System.out.println(c4.hashCode());}
}//实体类
class User {//属性private String name;private int id;private int age;//无参构造public User() {}//有参构造public User(String name, int id, int age) {this.name = name;this.id = id;this.age = age;}//get() & set()public String getName() {return name;}public void setName(String name) {this.name = name;}public int getId() {return id;}public void setId(int id) {this.id = id;}public int getAge() {return age;}public void setAge(int age) {this.age = age;}//重写 toString()@Overridepublic String toString() {return "User{" +"name='" + name + '\'' +", id=" + id +", age=" + age +'}';}
}
  • 运行结果:

在这里插入图片描述

Java反射机制提供的功能

  • 在运行时判断任意一个对象所属的类
  • 在运行时构造任意一个类的对象
  • 在运行时判断任意一个类所具有的成员变量和方法
  • 在运行时获取泛型信息
  • 在运行时调用任意一个对象的成员变量和方法
  • 在运行时处理注解
  • 生成动态代理
  • ……

Java反射优缺点

  • 优点:
    • 可以实现动态创建对象和编译,体现出很大的灵活性。
  • 缺点:
    • 对性能有影响。使用反射基本上是一种解释操作,我们可以告诉 JVM,我们希望做什么并且它满足我们的要求。这类操作总是慢于直接执行相同的操作。

反射相关的主要API

  • java.lang.Class:代表一个类
  • java.lang.reflect.Method:代表类的方法
  • java.lang.reflect.Field:代表类的成员变量
  • java.lang.reflect.Constructor:代表类的构造器

Class类

  • 在Object类中定义了以下的方法,此方法将被所有子类继承:

      public final Class<?> getClass()
    
  • 以上的方法返回值的类型是一个Class类,此类是 Java反射的源头,实际上所谓反射从程序的运行结果来看也很好理解,即:可以通过对象反射求出类的名称。

在这里插入图片描述

  • 对象照镜子后可以得到的信息:某个类的属性、方法和构造器、某个类到底实现了哪些接口。对于每个类而言,JRE都为其保留一个不变的Class类型的对象。一个Class对象包含了特定某个结构(class/interface/enum/annotation/primitive type/void/[])的有关信息。
    • Class本身也是一个类
    • Class对象只能由系统建立对象
    • 一个加载的类在 JVM 中只会有一个Class实例
    • 一个Class对象对应的是一个加载到 JVM 中的一个.class文件
    • 每个类的实例都会记得自己是由哪个Class实例所生成
    • 通过Class可以完整地得到一个类中的所有被加载的结构
    • Class类是Reflection的根源,针对任何你想动态加载、运行的类,唯有先获得相应的Class对象

Class类的常用方法

方法名功能说明
static ClassforName(String name)返回指定类名nameClass对象
Object newInstance()调用缺省构造函数,返回Class对象的一个实例
getName()返回此Class对象所表示的实体(类,接口,数组类或void)的名称
Class getSuperClass()返回当前Class对象的父类的Class对象
Class[] getinterfaces()获取当前Class对象的接口
ClassLoader getClassLoader()返回该类的类加载器
Constructor[] getConstructors()返回一个包含某些Constructor对象的数组
Method getMethod(String name,Class.. T)返回一个Method对象,此对象的形参类型为paramType
Field[] getDeclaredFields()返回Field对象的一个数组

获取Class类的实例对象

  • (a)若已知具体的类,通过类的class属性获取,该方法最为安全可靠,程序性能最高。

      Class clazz = Person.class;
    
  • (b)已知某个类的实例,调用该实例的getClass()方法获取Class对象

      Class clazz = person.getClass();
    
  • (c)已知一个类的全类名,且该类在类路径下,可通过Class类的静态方法forName()获取,可能抛出ClassNotFoundException

      Class clazz = Class.forName("demo01.Student");
    
  • (d)内置基本数据类型可以直接用类名.Type

  • (e)还可以利用ClassLoader(我们之后再学习)

  • 下面我们写一段代码来测试一下Class类实例对象的创建方式:

package com.clown.reflection;//测试 Class类实例对象的创建方式
public class Test03 {public static void main(String[] args) throws ClassNotFoundException {Person person = new Student();System.out.println("这个人是:" + person.name);//方式一:通过 对象.getClass() 获得Class c1 = person.getClass();System.out.println(c1.hashCode());//方式二:通过 Class.forName("包名.类名") 获得Class c2 = Class.forName("com.clown.reflection.Student");System.out.println(c2.hashCode());//方式三:通过 类名.Class 获得Class c3 = Student.class;System.out.println(c3.hashCode());//方式四:基本内置类型的包装类都有一个 Type属性Class<Integer> c4 = Integer.TYPE;System.out.println(c4);//对象.getSuperclass()  返回当前 Class对象的父类的 Class对象Class c5 = c1.getSuperclass();System.out.println(c5);}
}class Person {//属性public String name;//无参构造public Person() {}//有参构造public Person(String name) {this.name = name;}//重写 toString()@Overridepublic String toString() {return "Person{" +"name='" + name + '\'' +'}';}
}class Student extends Person {public Student() {this.name = "学生";}
}class Teacher extends Person {public Teacher() {this.name = "学生";}
}
  • 运行结果:

在这里插入图片描述

哪些类型可以有Class对象

  • class:外部类,成员(成员内部类,静态内部类),局部内部类,匿名内部类。
  • interface:接口
  • []:数组
  • enum:枚举
  • annotation:注解@interface
  • primitive type:基本数据类型
  • void
  • 下面我们来测试一下所有类型的Class对象:
package com.clown.reflection;import java.lang.annotation.ElementType;//测试所有类型的 Class对象
public class Test04 {public static void main(String[] args) {Class c1 = Object.class;  //类Class c2 = Comparable.class;  //接口Class c3 = String[].class;  //一维数组Class c4 = int[][].class;  //二维数组Class c5 = Override.class;  //注解Class c6 = ElementType.class;  //枚举Class c7 = Integer.class;  //基本数据类Class c8 = void.class;  //空Class c9 = Class.class;  //Class本身System.out.println(c1);  //tips:按住 Alt键可以复制多行System.out.println(c2);System.out.println(c3);System.out.println(c4);System.out.println(c5);System.out.println(c6);System.out.println(c7);System.out.println(c8);System.out.println(c9);System.out.println("=======================================");//只要元素类型和维度(一维数组、二维数组...)一样,就都是同一个 Class对象int[] a = new int[10];int[] b = new int[100];System.out.println(a.getClass().hashCode());System.out.println(b.getClass().hashCode());}
}
  • 运行结果:

在这里插入图片描述

类的加载与ClassLoader的理解

Java内存分析

在这里插入图片描述

类的加载过程

  • 当程序主动使用某个类时,如果该类还未被加载到内存中,则系统会通过如下三个步骤来对该类进行初始化。

在这里插入图片描述

  • 加载:将 class 文件字节码内容加载到内存中,并将这些静态数据转换成方法区的运行时数据结构,然后生成一个代表这个类的java.lang.Class对象。

  • 链接:将 Java 类的二进制代码合并到 JVM 的运行状态之中的过程。

    • 验证:确保加载的类信息符合 JVM 规范,没有安全方面的问题。

    • 准备:正式为类变量(static)分配内存并设置类变量默认初始值的阶段。

      注意:

      1. 这时候进行内存分配的仅包括类变量(即静态变量,被 static 关键字修饰的变量,只与类相关,因此被称为类变量),而不包括实例变量。实例变量会在对象实例化时随着对象一块分配在 Java 堆中。
      1. 从概念上讲,类变量所使用的内存都应当在 方法区 中进行分配。不过有一点需要注意的是:JDK 7 之前,HotSpot 使用永久代来实现方法区的时候,实现是完全符合这种逻辑概念的。 而在 JDK 7 及之后,HotSpot 已经把原本放在永久代的字符串常量池、静态变量等移动到堆中,这个时候类变量则会随着 Class 对象一起存放在 Java 堆中。
      1. 这里所设置的初始值"通常情况"下是数据类型默认的零值(如 0、0L、null、false 等),比如我们定义了static int m = 100 ,那么m变量在准备阶段的初始值就是 0 而不是 100(初始化阶段才会赋值)。特殊情况:比如给m变量加上了final关键字static final int m = 100 ,那么准备阶段m的值就被赋值为 100。
    • 解析:虚拟机常量池内的符号引用(常量名)替换为直接引用(地址)的过程,也就是得到类或者字段、方法在内存中的指针或者偏移量。

      例:在程序执行方法时,系统需要明确知道这个方法所在的位置。Java 虚拟机为每个类都准备了一张方法表来存放类中所有的方法。当需要调用一个类的方法的时候,只要知道这个方法在方法表中的偏移量就可以直接调用该方法了。通过解析操作符号引用就可以直接转变为目标方法在类中方法表的位置,从而使得方法可以被调用。

  • 初始化

    • 执行类构造器<clinit>()方法的过程,是类加载的最后一步,这一步 JVM 才开始真正执行类中定义的 Java 程序代码(字节码)。类构造器<clinit>()方法是由编译器自动收集类中所有类变量的赋值动作和静态代码块中的语句合并产生的。(类构造器是构造类信息的,不是构造该类对象的构造器)。
    • 当初始化一个类的时候,如果发现其父类还没有进行初始化,则需要先触发其父类的初始化。
    • 虚拟机会保证一个类的<clinit>()方法在多线程环境中被正确加锁和同步。
  • 我们来写一段代码,新建一个A类并分析它的加载过程:

package com.clown.reflection;public class Test05 {public static void main(String[] args) {A a = new A();System.out.println(A.m);/*1. 加载到内存,会产生一个类对应的 Class对象2. 链接,链接结束后 m = 03. 初始化<clinit>() {system.out.println("A类静态代码块初始化");m= 300;m = 100;}m=100*/}
}class A {static {System.out.println("A类静态代码块初始化");m = 300;}static int m = 100;public A() {System.out.println("A类的无参构造初始化");}
}
  • 运行结果:

在这里插入图片描述

  • 内存分析:
  • 当我们启动该程序时,程序首先会将类的 class 文件字节码内容加载到内存中,并将这些静态数据转换成方法区的运行时数据结构,然后生成一个代表这个类的java.lang.Class对象:

在这里插入图片描述

  • 接着,在进行了验证(略),确保加载的类信息符合 JVM 规范,没有安全方面的问题之后,就准备执行main()方法,正式为类变量(static)分配内存并设置类变量默认初始值的阶段,这些内存都将在方法区中进行分配,准备完成之后,还会进行解析(略):

在这里插入图片描述

  • 接着,当main()方法中使用了new关键字创建了A类的实例对象a时,执行类构造器<clinit>()方法,对对类进行初始化:A类的对象a通过代表A类的Class对象来调用加载的数据,然后再执行类中定义的 Java 程序代码,对我们类中的变量进行初始化:

在这里插入图片描述

什么时候会发生类初始化

  • 类的主动引用(一定会发生类的初始化)
    • 当虚拟机启动,先初始化main()方法所在的类
    • new一个类的对象
    • 调用类的静态成员(除了final常量)和静态方法使用java.lang.reflect包的方法对类进行反射调用
    • 当初始化一个类,如果其父类没有被初始化,则先会初始化它的父类
  • 类的被动引用(不会发生类的初始化)
    • 当访问一个静态域时,只有真正声明这个域的类才会被初始化。如:当通过子类引用父类的静态变量,不会导致子类初始化
    • 通过数组定义类引用,不会触发此类的初始化
    • 引用常量不会触发此类的初始化(常量在编译时就存入调用类的常量池中了)
  • 下面我们写一段程序来测试一下什么时候会发生类初始化:
  • 我们先测试类在什么时候会初始化(主动引用):
  • 使用new关键字创建Son类的对象:
package com.clown.reflection;//测试类什么时候会初始化
public class Test06 {static {System.out.println("Main类被加载");}public static void main(String[] args) {//1. 类的主动引用,会产生类的初始化Son son = new Son();}}//父类
class Father {static int b = 2;static {System.out.println("父类被加载");}}//子类
class Son extends Father {static {System.out.println("子类被加载");m = 300;}static int m = 100;static final int M = 1;}
  • 运行结果:

在这里插入图片描述

  • 我们发现程序首先初始化了主类(main()方法所在的类),然后初始化了我们使用new关键字创建对象的类(Son类)的父类(Father类),最后再初始化Son类。
  • 我们再使用Class.forName("包名.类名")的方式对Son类进行反射调用:
package com.clown.reflection;//测试类什么时候会初始化
public class Test06 {static {System.out.println("Main类被加载");}public static void main(String[] args) throws ClassNotFoundException {//1. 类的主动引用,会产生类的初始化//Son son = new Son();//反射也会产生类的初始化Class.forName("com.clown.reflection.Son");}}//父类
class Father {static int b = 2;static {System.out.println("父类被加载");}}//子类
class Son extends Father {static {System.out.println("子类被加载");m = 300;}static int m = 100;static final int M = 1;}
  • 运行结果:

在这里插入图片描述

  • 与使用new关键字主动引用一样,使用反射主动引用,程序也是首先初始化主类(main()方法所在的类),然后初始化我们使用反射调用的类(Son类)的父类(Father类),最后再初始化Son类。
  • 我们再测试类在什么时候不会初始化(被动引用):
  • 我们使用子类Son调用父类Father中定义的(static)类变量b
package com.clown.reflection;//测试类什么时候会初始化
public class Test06 {static {System.out.println("Main类被加载");}public static void main(String[] args) throws ClassNotFoundException {//1. 类的主动引用,会产生类的初始化//Son son = new Son();//反射也会产生类的初始化//Class.forName("com.clown.reflection.Son");//2. 类的被动引用,不会产生类的初始化System.out.println(Son.b);}}//父类
class Father {static int b = 2;static {System.out.println("父类被加载");}}//子类
class Son extends Father {static {System.out.println("子类被加载");m = 300;}static int m = 100;static final int M = 1;}
  • 运行结果:

在这里插入图片描述

  • 我们发现当我们引用静态变量b时,只有主类(main()方法所在的类)和真正声明整个静态变量的类(Father类)被初始化了,而引用此静态变量的类(Son类)没有被初始化。
  • 我们再使用new关键字定义一个Son类的数组:
package com.clown.reflection;//测试类什么时候会初始化
public class Test06 {static {System.out.println("Main类被加载");}public static void main(String[] args) throws ClassNotFoundException {//1. 类的主动引用,会产生类的初始化//Son son = new Son();//反射也会产生类的初始化//Class.forName("com.clown.reflection.Son");//2. 类的被动引用,不会产生类的初始化//System.out.println(Son.b);//通过数组定义类引用,不会触发此类的初始化Son[] array = new Son[5];}}//父类
class Father {static int b = 2;static {System.out.println("父类被加载");}}//子类
class Son extends Father {static {System.out.println("子类被加载");m = 300;}static int m = 100;static final int M = 1;}
  • 运行结果:

在这里插入图片描述

  • 我们发现只有主类被初始化了,而Son类并没有被初始化。这说明通过数组定义类引用时,不会触发此类的初始化。
  • 我们再测试调用Son类中的静态常量M
package com.clown.reflection;//测试类什么时候会初始化
public class Test06 {static {System.out.println("Main类被加载");}public static void main(String[] args) throws ClassNotFoundException {//1. 类的主动引用,会产生类的初始化//Son son = new Son();//反射也会产生类的初始化//Class.forName("com.clown.reflection.Son");//2. 类的被动引用,不会产生类的初始化//System.out.println(Son.b);//通过数组定义类引用,不会触发此类的初始化//Son[] array = new Son[5];//引用常量不会触发此类的初始化System.out.println(Son.M);}}//父类
class Father {static int b = 2;static {System.out.println("父类被加载");}}//子类
class Son extends Father {static {System.out.println("子类被加载");m = 300;}static int m = 100;static final int M = 1;}
  • 运行结果:

在这里插入图片描述

  • 只有主类被初始化了,定义此静态常量(final)的Son类并没有被初始化。说明引用常量不会触发此类的初始化。

类加载器的作用

  • 类加载的作用:将 class 文件字节码内容加载到内存中,并将这些静态数据转换成方法区的运行时数据结构,然后在堆中生成一个代表这个类的java.lang.Class对象,作为方法区中类数据的访问入口。
  • 类缓存:标准的 Java SE 类加载器可以按要求查找类,但一旦某个类被加载到类加载器中,它将维持加载(缓存)一段时间。不过 JVM 垃圾回收机制可以回收这些Class对象。

在这里插入图片描述

  • 类加载器作用是用来把类(class)装载进内存的。JVM 规范定义了如下类型的类的加载器。

    引导类加载器:也叫作根加载器,它是用 C++ 编写的,是 JVM 自带的类加载器,负责 Java 平台核心库jre/lib/rt.jar包),用来装载核心类库。该加载器无法直接获取

    扩展类加载器:负责jre/lib/ext目录下的 jar 包或-D java.ext.dirs指定目录下的 jar 包装入工作库

    系统类加载器:也叫作应用类加载器 ,负责java -classpath-D java.class.path所指的目录下的类与 jar 包装入工作,是最常用的加载器

在这里插入图片描述

  • 下面我们写一段代码来测试一下以上三种类加载器:
package com.clown.reflection;public class Test07 {public static void main(String[] args) throws ClassNotFoundException {//获取系统类加载器(也叫应用类加载器)ClassLoader systemClassLoader = ClassLoader.getSystemClassLoader();System.out.println(systemClassLoader);//获取系统类加载器的父类的加载器 --> 扩展类加载器ClassLoader parent = systemClassLoader.getParent();System.out.println(parent);//获取扩展类加载器的父类的加载器 --> 根加载器(也叫引导类加载器,使用 C/C++ 编写的,无法直接获取)ClassLoader grandparent = parent.getParent();System.out.println(grandparent);//测试当前类(Test07)是由哪个加载器加载的ClassLoader classLoader = Class.forName("com.clown.reflection.Test07").getClassLoader();System.out.println(classLoader);//测试 JDK内置的类是由哪个加载器加载的classLoader = Class.forName("java.lang.Object").getClassLoader();System.out.println(classLoader);//拓展:如何获得系统类加载器可以加载的路径System.out.println(System.getProperty("java.class.path"));/*E:\Environment\java\jdk1.8\jre\lib\charsets.jar;E:\Environment\java\jdk1.8\jre\lib\deploy.jar;E:\Environment\java\jdk1.8\jre\lib\ext\access-bridge-64.jar;E:\Environment\java\jdk1.8\jre\lib\ext\cldrdata.jar;E:\Environment\java\jdk1.8\jre\lib\ext\dnsns.jar;E:\Environment\java\jdk1.8\jre\lib\ext\jaccess.jar;E:\Environment\java\jdk1.8\jre\lib\ext\jfxrt.jar;E:\Environment\java\jdk1.8\jre\lib\ext\localedata.jar;E:\Environment\java\jdk1.8\jre\lib\ext\nashorn.jar;E:\Environment\java\jdk1.8\jre\lib\ext\sunec.jar;E:\Environment\java\jdk1.8\jre\lib\ext\sunjce_provider.jar;E:\Environment\java\jdk1.8\jre\lib\ext\sunmscapi.jar;E:\Environment\java\jdk1.8\jre\lib\ext\sunpkcs11.jar;E:\Environment\java\jdk1.8\jre\lib\ext\zipfs.jar;E:\Environment\java\jdk1.8\jre\lib\javaws.jar;E:\Environment\java\jdk1.8\jre\lib\jce.jar;E:\Environment\java\jdk1.8\jre\lib\jfr.jar;E:\Environment\java\jdk1.8\jre\lib\jfxswt.jar;E:\Environment\java\jdk1.8\jre\lib\jsse.jar;E:\Environment\java\jdk1.8\jre\lib\management-agent.jar;E:\Environment\java\jdk1.8\jre\lib\plugin.jar;E:\Environment\java\jdk1.8\jre\lib\resources.jar;E:\Environment\java\jdk1.8\jre\lib\rt.jar;D:\Workspaces\IdealProjects\JavaSE\out\production\BasicGrammer;D:\Workspaces\IdealProjects\JavaSE\BasicGrammer\src\com\lib\commons-io-2.13.0.jar;E:\IDEA\IntelliJ IDEA 2022.2.2\lib\idea_rt.jar*/}
}
  • 运行结果:

在这里插入图片描述

  • 由于最后一行输出结果太长,我们把它单独写在了上方代码的多行注释中。

http://www.ppmy.cn/news/1050933.html

相关文章

开源若依+uniapp商城支持微信小程序/H5/微信支付/商品管理/订单管理/会员管理

开源若依uniapp商城介绍支持微信小程序/H5/微信支付/商品管理/订单管理/会员管理 观看建议 建议两倍速度观看&#xff01;&#xff01;&#xff01; 访问地址&#xff1a;https://mall.ichengle.top/ 源码地址&#xff1a;https://gitee.com/zccbbg/RuoYi-Mall 若依介绍 若依…

sed替换命令

用sed编辑流时&#xff0c;最强大的命令莫过于它的替换命令。它有许多参数选项&#xff0c;可以完成诸多复杂的工作。 1. 替换命令的语法 sed [address-range|pattern-range] s/original-string /replacement-string/[substitute-flags] inputfile 注意&#xff0c;上面的换…

vue element-ui 菜单管理使用图标选择器组件

目录 &#x1f31f;前言&#x1f31f;安装&#x1f31f;main.js配置&#x1f31f;页面使用&#x1f31f;效果展示 &#x1f31f;前言 哈喽小伙伴们&#xff0c;本文为大家介绍一下 VueElementUI 中图标选择器组件的使用方法&#xff1b;一起来看下吧。 &#x1f31f;安装 np…

浙江某半导体厂房配电室电气节点无线测温方案

摘 要&#xff1a;半导体被誉为“制造业的大脑”&#xff0c;在关系国家安全和国民经济命脉的主要行业和关键领域占据支配地位&#xff0c;是国民经济的重要支柱。 随着数字技术的发展和数字经济在国民经济中所占比重越来越高&#xff0c;半导体产业的重要性还会进一步提升。安…

LLM生成式 AI 项目生命周期Generative AI project lifecycle

在本课程的其余部分中&#xff0c;您将学习开发和部署LLM驱动应用所需的技巧。在这个视频中&#xff0c;您将了解一个能帮助您完成此工作的生成式AI项目生命周期。此框架列出了从构思到启动项目所需的任务。到课程结束时&#xff0c;您应该对您需要做的重要决策、可能遇到的困难…

【实用工具】磁盘被写保护怎么解除

磁盘被写保护怎么解除 我的是磁盘3无法写只能读&#xff0c;具体的执行步骤看下面 C:\Users\wsw>diskpartMicrosoft DiskPart 版本 10.0.19041.964Copyright (C) Microsoft Corporation. 在计算机上: SH-DB751B3DISKPART> list disk磁盘 ### 状态 大小 可…

C++信息学奥赛1119:矩阵交换行

解题思路&#xff1a;当输出时换行 解题程序&#xff1a; #include<iostream> using namespace std; int main() {int arr[5][5];// 输入矩阵元素for(int i0;i<5;i){for(int j0;j<5;j){cin>>arr[i][j];}} int n,m;cin>>n>>m;// 根据条件进行矩…

js实现滚轮滑动到底部自动加载(完整版)

这里我们用vue实现(原生js相似), 这里我们用一个div当作一个容器; <div class="JL" @scroll="onScroll" ref="inin"> <div v-for="(item,index) in this.list" :key="index" > ....…