计算机视觉之图像特征提取

news/2024/11/23 13:15:04/

图像特征提取是计算机视觉中的重要任务,它有助于识别、分类、检测和跟踪对象。以下是一些常用的图像特征提取算法及其简介:

  1. 颜色直方图(Color Histogram)

    • 简介:颜色直方图表示图像中各种颜色的分布情况。通过将图像中的像素分成颜色通道(如RGB)并计算每个通道的颜色值分布,可以捕捉到图像的颜色信息。
    • 应用:颜色直方图常用于图像检索、图像分类和图像匹配等任务。
  2. 局部二值模式(Local Binary Pattern,LBP)

    • 简介:LBP是一种用于纹理特征提取的方法。它通过比较每个像素与其邻域像素的灰度值来构建特征。LBP特征对纹理的变化和结构有很好的描述能力。
    • 应用:LBP常用于人脸识别、纹理分类和目标检测等任务。
  3. 方向梯度直方图(Histogram of Oriented Gradients,HOG)

    • 简介:HOG是一种用于物体检测的特征提取方法,特别适用于行人检测。它通过计算图像中每个像素的梯度方向并构建梯度方向的直方图来表示图像。
    • 应用:HOG广泛应用于行人检测、目标识别和行为分析等领域。
  4. 尺度不变特征变换(Scale-Invariant Feature Transform,SIFT)

    • 简介:SIFT是一种用于检测和描述图像中局部特征的方法。它对图像的尺度、旋转和亮度变化具有不变性,因此在各种条件下都表现良好。
    • 应用:SIFT广泛用于特征匹配、物体识别和图像配准等任务。
  5. 加速稳定特征(Speeded-Up Robust Features,SURF)

    • 简介:SURF是一种用于图像特征提取的快速算法。它结合了SIFT的特点,并使用积分图像来加速特征检测和描述子计算。
    • 应用:SURF适用于实时应用,如实时目标跟踪和图像拼接。
  6. 卷积神经网络特征(Convolutional Neural Network Features)

    • 简介:基于深度学习的方法,如卷积神经网络(CNN),已经取得了在图像特征提取任务上的显著成功。通过在预训练的CNN模型上提取特征向量,可以获得强大的图像表示。
    • 应用:CNN特征广泛用于图像分类、目标检测、图像生成等各种计算机视觉任务。

历程:

颜色直方图 (Color Histogram) 示例

#include <opencv2/opencv.hpp>int main() {cv::Mat image = cv::imread("image.jpg");cv::Mat hist;// 将图像转换为HSV颜色空间cv::cvtColor(image, image, cv::COLOR_BGR2HSV);// 计算直方图int histSize = 256; // 直方图的大小float range[] = {0, 256}; // 像素值范围const float* histRange = {range};cv::calcHist(&image, 1, 0, cv::Mat(), hist, 1, &histSize, &histRange);// 打印直方图for (int i = 0; i < histSize; i++) {std::cout << "Bin " << i << ": " << hist.at<float>(i) << std::endl;}return 0;
}

局部二值模式 (Local Binary Pattern, LBP) 示例

#include <opencv2/opencv.hpp>int main() {cv::Mat image = cv::imread("image.jpg", cv::IMREAD_GRAYSCALE);cv::Mat lbpImage;// 计算LBP图像cv::Ptr<cv::ximgproc::LBP> lbp = cv::ximgproc::createLBPFast();lbp->compute(image, lbpImage);return 0;
}

方向梯度直方图 (Histogram of Oriented Gradients, HOG) 示例

#include <opencv2/opencv.hpp>int main() {cv::Mat image = cv::imread("image.jpg", cv::IMREAD_GRAYSCALE);cv::HOGDescriptor hog;// 设置HOG参数hog.winSize = cv::Size(64, 128); // 检测窗口大小hog.blockSize = cv::Size(16, 16); // 块大小hog.blockStride = cv::Size(8, 8); // 块的步幅hog.cellSize = cv::Size(8, 8); // 细胞大小// 计算HOG特征向量std::vector<float> descriptors;hog.compute(image, descriptors);return 0;
}

加速稳健特征 (Speeded-Up Robust Features, SURF) 示例

#include <opencv2/opencv.hpp>int main() {cv::Mat image = cv::imread("image.jpg", cv::IMREAD_GRAYSCALE);cv::Ptr<cv::xfeatures2d::SURF> surf = cv::xfeatures2d::SURF::create();// 检测关键点和计算描述子std::vector<cv::KeyPoint> keypoints;cv::Mat descriptors;surf->detectAndCompute(image, cv::noArray(), keypoints, descriptors);return 0;
}

尺度不变特征变换 (Scale-Invariant Feature Transform, SIFT) 示例

#include <opencv2/opencv.hpp>int main() {cv::Mat image = cv::imread("image.jpg", cv::IMREAD_GRAYSCALE);cv::Ptr<cv::xfeatures2d::SIFT> sift = cv::xfeatures2d::SIFT::create();// 检测关键点和计算描述子std::vector<cv::KeyPoint> keypoints;cv::Mat descriptors;sift->detectAndCompute(image, cv::noArray(), keypoints, descriptors);return 0;
}

卷积神经网络特征 (Convolutional Neural Network Features) 示例

#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>int main() {cv::Mat image = cv::imread("image.jpg");cv::dnn::Net net = cv::dnn::readNetFromCaffe("deploy.prototxt", "model.caffemodel");// 预处理图像(归一化、尺寸调整等)cv::Mat blob = cv::dnn::blobFromImage(image, 1.0, cv::Size(224, 224), cv::Scalar(104, 117, 123));// 设置输入图像net.setInput(blob);// 前向传播并获取特征向量cv::Mat features = net.forward();return 0;
}

http://www.ppmy.cn/news/1049387.html

相关文章

页面加了背景图片,向右拉滚动条出现页面空白没有背景图的情况

前言 页面加了背景图片&#xff0c;在没有缩放浏览器的情况下&#xff0c;有横向的滚动条&#xff0c;向右拉滚动条会出现页面空白没有背景图的情况。 解决 直接从浏览器的滚动条入手&#xff0c;保留纵向滚动条&#xff0c;去除横向滚动条&#xff0c;这样就不存在向右拉横…

8月18日上课内容 Haproxy搭建Web群集

本章结构 课程大纲 Haproxy调度算法 常见的web集群调度器 目前常见的Web集群调度器分为软件和硬件软件 通常使用开源的LVS、Haproxy、Nginx 硬件一般使用比较多的是F5&#xff0c;也有很多人使用国内的一些产品&#xff0c;如梭子鱼、绿盟等 Haproxy应用分析 LVS在企业应用中…

iotdb查询结果集转换为java对象

iotdb查询结果集转换为java对象 百度文心 未使用插件 要将IoTDB查询结果集转换为Java对象&#xff0c;您需要编写Java代码以解析查询结果并将其转换为相应的Java对象。 以下是一个示例代码&#xff0c;可以将IoTDB查询结果集转换为Java对象&#xff1a; import java.io.IOEx…

常用字符串匹配算法

一、BF匹配 BF算法中的BF是Brute Force的缩写&#xff0c;中文叫作暴力匹配算法&#xff0c;也叫朴素匹配算法。 BF算法的时间复杂度很高&#xff0c;是O(nm)&#xff0c;但在实际的开发中&#xff0c;它却是一个比较常用的字符串匹配算法。 第一&#xff0c;实际的软件开发中…

废品回收抢单派单小程序开源版开发

废品回收抢单派单小程序开源版开发 用户注册和登录&#xff1a;用户可以通过手机号码注册和登录小程序&#xff0c;以便使用废品回收抢单派单功能。废品回收订单发布&#xff1a;用户可以发布废品回收订单&#xff0c;包括废品种类、数量、回收地点等信息。废品回收抢单&#…

Flink流批一体计算(13):PyFlink Tabel API之SQL DDL

1. TableEnvironment 创建 TableEnvironment from pyflink.table import Environmentsettings, TableEnvironment# create a streaming TableEnvironmentenv_settings Environmentsettings.in_streaming_mode()table_env TableEnvironment.create(env_settings)# or create…

非计算机科班如何丝滑转码

近年来&#xff0c;很多人想要从其他行业跳槽转入计算机领域。非计算机科班如何丝滑转码&#xff1f; 方向一&#xff1a;如何规划才能实现转码&#xff1f; 对于非计算机科班的人来说&#xff0c;想要在计算机领域实现顺利的转码并不是一件容易的事情&#xff0c;但也并非不…

整数数组区间的插入与删除

相似题参考&#xff1a; 56. Merge Intervals - 力扣&#xff08;LeetCode&#xff09;合并区间 57. 插入区间 - 力扣&#xff08;LeetCode&#xff09; 1272. 删除区间 package Jerry;import org.junit.Assert; import org.junit.Test;import java.util.ArrayList; import…