归并排序:从二路到多路

news/2025/2/16 4:56:45/

前言

我们所熟知的快速排序归并排序都是非常优秀的排序算法。

但是快速排序和归并排序的一个区别就是:快速排序是一种内部排序,而归并排序是一种外部排序

简单理解归并排序:递归地拆分,回溯过程中,将排序结果进行合并。

大致流程示意图:

 

假设递归的终止条件就是剩下三个以下的元素就可以排序了。

注意:这步合并的过程用到了额外的存储空间。完成了排序之后再复制回去。

二路归并演示代码

#include <iostream>
using namespace std;void merge_sort(int *arr, int l, int r) {// 递归终止条件:只有一个元素或者没有元素的时候,不需要排序。if (l >= r) return ;// 打印输出排序之前的情况cout << endl;cout << "sort " << l << "<-->" << r << " : ";for (int i = l; i <= r; i++) cout << arr[i] << " ";cout << endl;int mid = (l + r) >> 1;merge_sort(arr, l, mid); // left sortmerge_sort(arr, mid + 1, r); // right sort// 写递归代码,一定不要展开地看,上面两行代码就当做左右子区间已经排序好了。// 下面将对两个区间进行合并,需要开辟新的空间将元素存到temp数组中。int *temp = (int *)malloc(sizeof(int) * (r - l + 1));int k = 0, p1 = l, p2 = mid + 1;while (p1 <= mid || p2 <= r) {if ((p2 > r) || (p1 <= mid && arr[p1] <= arr[p2])) {// 只有当右边为空,或者左边不为空并且左边比右边小,才将左边的元素放入temp[k++] = arr[p1++];} else {temp[k++] = arr[p2++];}}// 最后再拷贝回去即可for (int i = l; i <= r; i++) arr[i] = temp[i - l];// 打印输出排序之后的情况for (int i = l; i <= r; i++) cout << arr[i] << " ";cout << endl;free(temp);return ;
}int main() {int n;int arr[100];cin >> n;for (int i = 0; i < n; i++) cin >> arr[i];merge_sort(arr, 0, n - 1);for (int i = 0; i < n; i++) cout << arr[i] << " ";return 0;
}

输入数据:

10 
7 9 0 8 6 4 5 3 1 2

输出:

sort 0<-->9 : 7 9 0 8 6 4 5 3 1 2 sort 0<-->4 : 7 9 0 8 6 sort 0<-->2 : 7 9 0 sort 0<-->1 : 7 9 
7 9 
0 7 9 sort 3<-->4 : 8 6
6 8
0 6 7 8 9sort 5<-->9 : 4 5 3 1 2sort 5<-->7 : 4 5 3sort 5<-->6 : 4 5
4 5
3 4 5sort 8<-->9 : 1 2
1 2
1 2 3 4 5
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9

多路归并

上述演示代码的归并排序只是二路归并。将两个有序数组合并为一个有序数组。

那么多路归并就很好理解了,就是将多个有序数组合并为一个有序数组。

比如三路归并:

 关于多路归并排序的应用,有一道很经典的面试题:

意思就是:我的内存太小了,无法通过诸如快速排序这样的内部排序算法,进行数据的直接整体排序。那么为什么这个问题可以由归并算法来解决呢?

归并的时候,外存可以作为归并排序中的那片关键的额外空间,数据是可以直接写回外存的,所以不需要内存有40GB的额外空间来先存放排序完的数据,再写回外存。

其实这40GB的文件可以被拆分成20份2GB的小文件,我们只要分别对20份小文件进行排序之后,进行20路归并操作就可以了

注意:程序执行一定是在内存当中,所有的数据也都需要从辅存或者外存当中调入内存当中,才可以进行CPU的运算。一个2GB大小的内存当然无法调入40GB的数据。

还需注意的是:我们在程序中只存储了相应的文件指针,并没有将文件中的内容一次性全部读满内存,而是需要一个数据就从文件中读一个数据。

读取文件演示代码:

*************************************************************************> File Name: merge_file.cpp> Author: jby> Mail: > Created Time: Sat 12 Aug 2023 11:39:20 PM CST************************************************************************/#include<iostream>
using namespace std;int main(int argc, char *argv[]) {int n = argc - 1; // 读取文件数量FILE **farr = (FILE **)malloc(sizeof(FILE *) * n);for (int i = 1; i <= n; i++) {farr[i - 1] = fopen(argv[i], "r");}for (int i = 0; i < n; i++) {int a;while (~fscanf(farr[i], "%d", &a)) {printf("%d\n", a);}printf("======\n");}return 0;
}

生成俩数据文件:file1、file2

# file1
1
34
56
78

# file2:
3
45
89
100
执行命令行:$./a.out file1 file2

输出结果:

1
34
56
78
======
3
45
89
100
======

这样我们就依次读取了存放在两个文件中的数据。

文件排序演示代码(简单实现,不用归并)

/*************************************************************************> File Name: merge_file.cpp> Author: jby> Mail: > Created Time: Sat 12 Aug 2023 11:39:20 PM CST************************************************************************/#include<iostream>
using namespace std;struct Data {FILE *fin;     // fin: 当前文件指针int val, flag; // val: 当前读取的值;flag: 当前文件是否为空
};int main(int argc, char *argv[]) {int n = argc - 1; // 读取文件数量Data *data = (Data *)malloc(sizeof(Data) * n);for (int i = 1; i <= n; i++) {data[i - 1].fin = fopen(argv[i], "r");if (fscanf(data[i - 1].fin, "%d", &data[i - 1].val) == EOF) {data[i - 1].flag = 1;} else {data[i - 1].flag = 0;}}FILE *fout = fopen("output", "w");while (1) {int flag = 0;int ind = -1;int minVal = 0x3f3f3f3f;for (int i = 0; i < n; i++) {if (data[i].flag) continue; // 当前文件为空if (ind == -1 || data[i].val < data[ind].val) {ind = i;}}if (ind != -1) {fprintf(fout, "%d\n", data[ind].val); // 向结果文件中输出内容if (fscanf(data[ind].fin, "%d", &data[ind].val) == EOF) {data[ind].flag = 1;} else {data[ind].flag = 0;}flag = 1;}if (flag == 0) break;}return 0;
}
执行命令行:$./a.out file1 file2

输出结果,保存在output文件中:

1
3
34
45
56
78
89
100

归并排序的算法思想

我们不妨把思维从排序问题当中延展出来,归并排序的算法思想可以看成是以下三个步骤:

  1. 左边处理一下,得到左边的信息
  2. 右边处理一下,得到右边的信息
  3. 最后再处理,横跨左右两边的信息

这就是分而治之的思想。

LeetCode刷题实战

剑指 Offer 51. 数组中的逆序对

在归并排序的过程中,当右边区间的元素放进额外空间的时候,左边剩下的元素个数就是该元素所对应的逆序对个数。所以可以在归并的过程中不断累加。

class Solution {
public:vector<int> temp;int countResult(vector<int>& nums, int l, int r) {if (l >= r) return 0; // 如果只有一个元素,逆序数为0int ans = 0, mid = (l + r) >> 1;ans += countResult(nums, l, mid);ans += countResult(nums, mid + 1, r);int k = l, p1 = l, p2 = mid + 1;while (p1 <= mid || p2 <= r) {if ((p2 > r) || (p1 <= mid && nums[p1] <= nums[p2])) {temp[k++] = nums[p1++];} else {temp[k++] = nums[p2++];ans += (mid - p1 + 1);}}for (int i = l; i <= r; i++) nums[i] = temp[i];return ans;}int reversePairs(vector<int>& nums) {while (temp.size() < nums.size()) temp.push_back(0);return countResult(nums, 0, nums.size() - 1);       }
};

23. 合并 K 个升序链表 - 力扣(LeetCode)

这道题其实跟之前的文件排序演示代码的逻辑没有本质区别,只不过这道题可以用到堆来加速。

class Solution {
public:struct CMP {bool operator()(ListNode *p, ListNode *q) {return p->val > q->val;}};ListNode* mergeKLists(vector<ListNode*>& lists) {priority_queue<ListNode *, vector<ListNode *>, CMP> q;for (auto x : lists) {if (x == nullptr) continue;q.push(x);}ListNode ret, *p = &ret;while (!q.empty()) {ListNode *cur = q.top();q.pop();p->next = cur;p = cur;if (cur->next) q.push(cur->next);}return ret.next;}
};

148. 排序链表 - 力扣(LeetCode)


 

如何用归并排序实现链表的排序呢?下面这段代码还是很具有典型意义的用链表来实现过程。

lass Solution {
public:ListNode *mergeSort(ListNode *head, int n) {if (head == nullptr || head->next == nullptr) return head;int l = n / 2, r = n - l;ListNode *lp = head, *rp = lp, *p;for (int i = 1; i < l; i++, rp = rp->next);p = rp, rp = rp->next;p->next = nullptr;lp = mergeSort(lp, l); // left Sortrp = mergeSort(rp, r); // right SortListNode ret;p = &ret;while (lp || rp) {if (rp == nullptr || (lp && lp->val < rp->val)) {p->next = lp;lp = lp->next;p = p->next;} else {p->next = rp;rp = rp->next;p = p->next;}}return ret.next;}ListNode* sortList(ListNode* head) {int n = 0;ListNode *p = head;while (p) p = p->next, n += 1;return mergeSort(head, n);}
};

1305. 两棵二叉搜索树中的所有元素 - 力扣(LeetCode)

用中序遍历,归并两颗子树,也是具有一定综合性的题。(怎么说的跟考研数学似的。。。)

class Solution {
public:void getResult(TreeNode *root, vector<int> &arr) {if (root == nullptr) return ;getResult(root->left, arr);arr.push_back(root->val);getResult(root->right, arr);return ;}vector<int> getAllElements(TreeNode* root1, TreeNode* root2) {vector<int> lnums, rnums;getResult(root1, lnums);getResult(root2, rnums);vector<int> ret;int p1 = 0, p2 = 0;while (p1 < lnums.size() || p2 < rnums.size()) {if (p2 >= rnums.size() || (p1 < lnums.size() && lnums[p1] < rnums[p2])) {ret.push_back(lnums[p1++]);} else {ret.push_back(rnums[p2++]);}}return ret;}
};

327. 区间和的个数 - 力扣(LeetCode)

一说到区间和值,就能想到前缀和。区间和等于前缀和数组中两项相减的值。问题就变成了,前缀和数组中,有多少对 lower <= sun[i]-sum[j] <= upper (i>j)

利用左右区间的有序性,加速查找的过程。

算法解题过程的封装思维:当我们将问题转化成另一个问题的时候,我们就忘掉前面的问题到底是什么,只需专注解决当前这个独立的问题。而不是脑子里一团乱麻。

class Solution {
public:int countTwoPart(vector<long long> &sum, int l1, int r1, int l2, int r2, int lower, int upper) {int ans = 0, k1 = l1, k2 = l1;for (int j = l2; j <= r2; j++) {long long a = sum[j] - upper;long long b = sum[j] - lower;while (k1 <= r1 && sum[k1] < a) k1++;while (k2 <= r1 && sum[k2] <= b)k2++;ans += k2 - k1;}return ans;}int mergeSort(vector<long long> &sum, int l, int r, int lower, int upper) {if (l >= r) return 0; // 只有一个元素的话,根本找不到数值对。int mid = (l + r) >> 1, ans = 0;ans += mergeSort(sum, l, mid, lower, upper);ans += mergeSort(sum, mid + 1, r, lower, upper);ans += countTwoPart(sum, l, mid, mid + 1, r, lower, upper);int k = l, p1 = l, p2 = mid + 1;while (p1 <= mid || p2 <= r) {if (p2 > r || (p1 <= mid && sum[p1] < sum[p2])) {temp[k++] = sum[p1++];} else {temp[k++] = sum[p2++];}}for (int i = l; i <= r; i++) sum[i] = temp[i];return ans; }vector<long long> temp;int countRangeSum(vector<int>& nums, int lower, int upper) {vector<long long> sum(nums.size() + 1);while (temp.size() < sum.size()) temp.push_back(0);sum[0] = 0;for (int i = 0; i < nums.size(); i++) sum[i + 1] = sum[i] + nums[i];return mergeSort(sum, 0, sum.size() - 1, lower, upper);}
};

本质上还是利用了分治的思想。核心的过程就是如何计算跨左右两半部分的过程

315. 计算右侧小于当前元素的个数 - 力扣(LeetCode)

已经求得左右半边各自比它小的元素。两个区间合并。

class Solution {
public:// 归并排序的思想:分两个区间,统计两个区间的性质。// 在归并的过程中,左右两个有序区间,合并的时候,从大到小的顺序排,左边区间内,如果元素大于右边,则左边的元素比他小的个数应当加上右边r-p2+1struct Data {Data(int val, int ind) : val(val), ind(ind), cnt(0) {}bool operator > (const Data &a) {return val > a.val;}int val, ind, cnt;};void mergeSort(vector<Data> &arr, int l, int r) {if (l >= r) return ; // 如果只剩下一个元素,那就计算不了左右两边的统计性质int mid = (l + r) >> 1;mergeSort(arr, l, mid);mergeSort(arr, mid + 1, r);int k = l, p1 = l, p2 = mid + 1;while (p1 <= mid || p2 <= r) {if (p2 > r || (p1 <= mid && arr[p1] > arr[p2])) {arr[p1].cnt += r - p2 + 1;temp[k++] = arr[p1++];} else {temp[k++] = arr[p2++];}}for (int i = l; i <= r; i++) arr[i] = temp[i];return ;}vector<Data> temp;vector<int> countSmaller(vector<int>& nums) {vector<Data> arr;for (int i = 0; i < nums.size(); i++) arr.push_back(Data{nums[i], i});while (temp.size() < nums.size()) temp.push_back(Data{0, 0});mergeSort(arr, 0, arr.size() - 1);vector<int> ret(nums.size());for (auto x : arr) ret[x.ind] = x.cnt;return ret;}
};


http://www.ppmy.cn/news/1044805.html

相关文章

C++系列-引用

引用 引用的基本使用引用的起源引用的语法引用的本质引用的注意事项引用和指针 引用作为函数参数引用作为函数的返回值常量引用其它用返回值方式调用函数&#xff08;case 1&#xff09;用函数的返回值初始化引用的方式调用函数&#xff08;case 2&#xff09;用返回引用的方式…

面试算法编程题

面试算法编程题记录 题目 : 羊圈里的狼 题目背景 : 一到了晚上&#xff0c;草原牧民的羊就会被赶进羊圈里。这时&#xff0c;野外的狼群就会打羊羔的主意。为了保护羊羔&#xff0c;牧民需要将羊圈里的狼赶走或杀死。由于来的狼很多&#xff0c;他需要快速甄别哪些狼在羊圈里面…

除自身以外数组的乘积(c语言详解)

题目&#xff1a;除自身外数组的乘积 给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据保证数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请不要使用除…

mekefile 编写

mekefile 编写 参考 Linux下使用 autoconf和automake 自动构建 项目 make file文件 makefile 中加入shell语句 if shell 参考 foo.bak: foo.barecho "foo"if [ -d "~/Dropbox" ]; then echo "Dir exists"; fi Or foo.bak: foo.barecho &quo…

运营知识之用户运营(一)触达用户的几种方式

运营知识之用户运营&#xff08;一&#xff09;触达用户的几种方式 APP推送短信&#xff08;DeepLink/Deferred DeepLink&#xff09;&#xff1a;短信拉起app电子邮件 EDM电话/外呼&#xff08;人工、AI&#xff09;电话外呼加短信&#xff08;操作步骤短链&#xff09;微信生…

matlab使用教程(19)—曲线拟合与一元方程求根

1.多项式曲线拟合 此示例说明如何使用 polyfit 函数将多项式曲线与一组数据点拟合。您可以按照以下语法&#xff0c;使用 polyfit 求出以最小二乘方式与一组数据拟合的多项式的系数 p polyfit(x,y,n), 其中&#xff1a; • x 和 y 是包含数据点的 x 和 y 坐标的向量 …

FPGA:uart原理+tx发送模块+rx接收模块

文章目录 一、串口通信二、UART通信三、tx发送模块四、rx模块接收 一、串口通信 处理器与外部设备通信的两种方式&#xff1a; 串行通信&#xff1a; 指数据的各个位使用多条数据线同时进行传输。 并行通信&#xff1a; 将数据分成一位一位的形式在一条数据线上逐个传输。 串…

小航助学GESP_C++一级模拟测试卷第3套(含题库答题软件账号)

需要在线模拟训练的题库账号请点击 小航助学编程在线模拟试卷系统&#xff08;含题库答题软件账号&#xff09;_程序猿下山的博客-CSDN博客 需要在线模拟训练的题库账号请点击 小航助学编程在线模拟试卷系统&#xff08;含题库答题软件账号&#xff09;_程序猿下山的博客-CSD…