PSP - 基于扩散生成模型预测蛋白质结构 EigenFold 算法与环境配置

news/2025/2/21 8:35:54/

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/132357976

EigenFold

Paper: EigenFold: Generative Protein Structure Prediction with Diffusion Models

EigenFold 是用于蛋白质结构预测的扩散生成模型(即,已知序列 至 结构分布)。基于谐波扩散,将键约束纳入扩散建模框架,并且产生一个级联分辨率的生成过程。

  • 扩散生成模型 (Diffusion Generative Model):利用随机扩散过程,生成数据样本的机器学习模型。
  • 谐波扩散 (Harmonic Diffusion):考虑谐波势能对于扩散过程的影响的数学模型。
  • 键约束 (Bond Constraints):限制蛋白质中原子间距离和角度变化范围的物理条件。
  • 级联分辨率 (Cascading-Resolution) :从粗糙到精细,逐步提高生成结果质量的方法。
  • OmegaFold 嵌入向量(OmegaFold Embeddings):由 OmegaFold 模型产生的,表示蛋白质序列特征的向量。

关于 EigenFold,即:

We define a diffusion process that models the structure as a system of harmonic oscillators and which naturally induces a cascading-resolution generative process along the eigenmodes of the system.
扩散过程,即将结构模型化为谐振子 (Harmonic Oscillators) 系统,该过程自然地沿着系统的本征模式 (Eigenmodes),产生级联分辨率的生成过程。

EigenFold 算法重点:

  • 蛋白质结构生成的新方法: 基于扩散模型的生成式模型,可以从给定的蛋白质序列生成一组可能的结构。该模型利用 OmegaFold 的预训练嵌入和得分网络来学习蛋白质结构的概率分布。
  • 谐波扩散过程:定义新的扩散过程,将蛋白质结构建模为一系列谐振子,其势能为相邻残基之间的距离的二次函数。该过程可以保证采样的结构满足化学约束,并且可以沿着系统的本征模式进行投影,实现逐步精细化的生成过程。
  • 得分网络架构:使用基于 E3NN 的图神经网络作为得分网络,输入为残基坐标和 OmegaFold 嵌入向量,输出为梯度向量。该网络具有 SE(3) 等变性,保证最终模型密度也具有 SE(3) 不变性。

EigenFold GitHub: https://github.com/bjing2016/EigenFold


1. 结构预测

准备 new.csv 文件,预测 7skh.B 的结构,即:

# with columns name, seqres (see provided splits for examples) and run
name,valid_alphas,seq,head,resolution,deposition_date,release_date,structure_method,seqres,seqlen
7skh.B.pdb,220,NAPVFQQPHYEVVLDEGPDTINTSLITVQALDGTVTYAIVAGNIINTFRINKHTGVITAAKELDYEISHGRYTLIVTATDQCPILSHRLTSTTTVLVNVNDINDNVPTFPRDYEGPFDVTEGQPGPRVWTFLAHDRDSGPNGQVEYSVVDGDPLGEFVISPVEGVLRVRKDVELDRETIAFYNLTICARDRGVPPLSSTMLVGIRVLDINDNLEHHHHHH,cell adhesion,2.27,2021-10-20,2022-10-26,x-ray diffraction,MNAPVFQQPHYEVVLDEGPDTINTSLITVQALDLDEGPNGTVTYAIVAGNIINTFRINKHTGVITAAKELDYEISHGRYTLIVTATDQCPILSHRLTSTTTVLVNVNDINDNVPTFPRDYEGPFDVTEGQPGPRVWTFLAHDRDSGPNGQVEYSVVDGDPLGEFVISPVEGVLRVRKDVELDRETIAFYNLTICARDRGVPPLSSTMLVGIRVLDINDNLEHHHHHH,227

运行命令:

python make_embeddings.py --out_dir ./embeddings --splits mydata/new.csv
python inference.py --model_dir ./pretrained_model --ckpt epoch_7.pt --pdb_dir ./structures --embeddings_dir ./embeddings --embeddings_key name --elbo --num_samples 5 --alpha 1 --beta 3 --elbo_step 0.2 --splits mydata/new.csv

预测的蛋白质结构,如下:

  • EigenFold 算法只能预测 CA 骨架,其余需要填充。
  • 黄色是 EigenFold 的预测结构,蓝色是真实的 PDB 结构 (7skh.B)。

即:

Img


2. 环境配置

下载 GitHub 工程:

git clone git@github.com:bjing2016/EigenFold.git

2.1 配置 Docker 环境

构建 Docker 环境:

nvidia-docker run -it --name eigenfold-[your name] -v [nfs path]:[nfs path] af2:v1.02

预先配置 Docker 环境中的 conda 源 与 pip 源,加速下载过程,参考 开源可训练的蛋白质结构预测框架 OpenFold 的环境配置

如果安装错误,清空 conda 环境,建议使用 rsync 快速删除,即:

mkdir tmp
rsync -a --delete tmp/ /opt/conda/envs/eigenfold
rm -rf /opt/conda/envs/eigenfold

配置 conda 环境,即:

# 安装 conda 环境
conda create -n eigenfold python=3.8
conda activate eigenfold

2.2 配置 PyTorch 系列包

安装 PyTorch,建议使用 conda 安装,而不是 pip 安装,参考 Installing Previous Versions of PyTorch 即:

# pip 安装异常,建议使用 conda 安装。
# pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113
conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch

预先测试 PyTorch 是否安装成功,即:

pythonimport torch
print(torch.__version__)  # 1.11.0
print(torch.cuda.is_available())  # True

再安装 PyTorch 相关包,一共 5 个包,即 torch-scattertorch-sparsetorch-clustertorch-spline-convtorch-geometric,建议逐个安装,排查问题,即:

pip install torch-scatter -f https://data.pyg.org/whl/torch-1.11.0+cu113.html
pip install torch-sparse -f https://data.pyg.org/whl/torch-1.11.0+cu113.html
pip install torch-cluster -f https://data.pyg.org/whl/torch-1.11.0+cu113.html
pip install torch-spline-conv -f https://data.pyg.org/whl/torch-1.11.0+cu113.html
pip install torch-geometric -f https://data.pyg.org/whl/torch-1.11.0+cu113.html

安装其他依赖包:

pip install e3nn pyyaml wandb biopython matplotlib pandas

2.3 配置 OmegaFold 依赖

安装 OmegaFold 依赖,即:

# 调用时,需要在 EigenFold 的根目录下。
wget https://helixon.s3.amazonaws.com/release1.pt
git clone https://github.com/bjing2016/OmegaFold
pip install --no-deps -e OmegaFold

注意需要预先下载 OmegaFold 的模型 release1.pt,大约 3 个 G左右。

OmegaFold GitHub: OmegaFold

This command will download the weight from https://helixon.s3.amazonaws.com/release1.pt to ~/.cache/omegafold_ckpt/model.pt and load the model

cd EigenFold
bypy info
bypy downfile /huggingface/eigenfold/omegafold-release1.pt model.pt

2.4 配置 TMScore 与 LDDT

安装 TMScore 与 LDDT,即:

mkdir /opt/bin
cd ~/binwget https://openstructure.org/static/lddt-linux.zip
unzip lddt-linux.zip
cp lddt-linux/lddt .
./lddt  # 测试wget https://zhanggroup.org/TM-score/TMscore.cpp
g++ -static -O3 -ffast-math -lm -o TMscore TMscore.cpp
./TMscore  # 测试export PATH="/opt/bin/:$PATH"

2.6 上传 Docker

提交 docker image,设置标签 (tag),以及上传 docker 至服务器,即:

# 提交 Tag
docker ps -l
docker commit [container id] eigenfold:v1.0# 准备远程 Tag
docker tag eigenfold:v1.0 harbor.[ip].com/[your name]/eigenfold:v1.0
docker images | grep "eigenfold"# 推送至远程
docker push harbor.[ip].com/[your name]/eigenfold:v1.0
# 从远程拉取
docker pull harbor.[ip].com/[your name]/eigenfold:v1.0# 或者保存至本地
docker save eigenfold:v1.0 | gzip > eigenfold_v1_0.tar.gz
# 加载已保存的 docker image
docker image load -i eigenfold_v1_0.tar.gz
docker images | grep "eigenfold"

BugFix

Bug1: torch_sparse 版本不兼容问题。

RuntimeError: 
object has no attribute sparse_csc_tensor:File "/opt/conda/envs/eigenfold/lib/python3.8/site-packages/torch_sparse/tensor.py", line 520value = torch.ones(self.nnz(), dtype=dtype, device=self.device())return torch.sparse_csc_tensor(colptr, row, value, self.sizes())~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE

参考: torch has no attribute sparse_csr_tensor

torch-sparse 降级至 0.6.14 版本,即可:

conda list torch-sparse
# packages in environment at /opt/conda/envs/eigenfold:
#
# Name                    Version                   Build  Channel
torch-sparse              0.6.17                   pypi_0    pypipip install torch-sparse==0.6.14 -f https://data.pyg.org/whl/torch-1.11.0+cu113.html

Bug2: Python 3.9 新特性不兼容问题

TypeError: unsupported operand type(s) for |: 'dict' and 'dict'

原因:What’s New In Python 3.9

方案1是升级至 Python3.9 版本,方案2是修改源码,位于EigenFold/utils/pdb.py,即:

# d[key] = {'CA': 'C'} | {key: val['symbol'] for key, val in atoms.items() if val['symbol'] != 'H' and key != 'CA'}
dict1 = {'CA': 'C'}
dict2 = {key: val['symbol'] for key, val in atoms.items() if val['symbol'] != 'H' and key != 'CA'}
d[key] = {**dict1, **dict2}

其余参考:

  • Linux 下删除大量文件效率对比,看谁删的快!

http://www.ppmy.cn/news/1043448.html

相关文章

himall3.0商城源码

目录 1 himall3.0商城源码 1.1 /// 是否可以售后 1.2 //待收货 待自提只可以订单退款 1.3 /// 是否可以售后 himall3.0商城源码 /// <summary>

ARM M33架构入门

概述 Arm Cortex-M33核心处理器专为需要高效安全或数字信号控制的物联网和嵌入式应用而设计。该处理器具有许多可选功能&#xff0c;包括数字信号处理扩展 (DSP)、用于硬件强制隔离的TrustZone 安全性、内存保护单元 (MPU)和浮点单元 (FPU)。 Cortex-M33 的性能比 Cortex-M…

html显示空白字符

显示空白字符 默认情况下&#xff0c;元素显示内容会产生空白折叠&#xff0c;即对于空白字符&#xff0c;最终会将连续的空白字符显示为一个空格&#xff1b; 如果希望能够正常在元素中显示这些空白字符&#xff0c;那么可以进行如下设置&#xff1a; .chapterContent {whit…

算法与数据结构(七)--堆

一.堆 1.堆的定义 堆是计算机科学中一类特殊的数据结构的通常&#xff0c;堆通常可以被看做是一颗完全二叉树的数组对象。 堆的特性 1.它是完全二叉树&#xff0c;除了树的最后一层结点不需要是满的&#xff0c;其他的每一层从左到右都是满的&#xff0c;如果最后一层结点不…

视频汇聚平台EasyCVR视频监控播放平台WebRTC流地址无法播放的问题解决方案

开源EasyDarwin视频监控TSINGSEE青犀视频平台EasyCVR能在复杂的网络环境中&#xff0c;将分散的各类视频资源进行统一汇聚、整合、集中管理&#xff0c;在视频监控播放上&#xff0c;TSINGSEE青犀视频安防监控汇聚平台可支持1、4、9、16个画面窗口播放&#xff0c;可同时播放多…

南大通用数据库(Gbase 8s) 创建UDR外部函数

一、在使用 date_format、from_unixtime、to_days、yearweek 函数时&#xff0c;Gbase 8s 数据库不支持&#xff0c;可以使用创建 UDR 外部函数来实现 二、登录命令控制台或者使用 navicat 连接 Gbase 数据库 这里使用 navicat &#xff0c;点击新增连接选择 PostGreSql 驱动…

vue3 ref的使用、问题及源码分析;引用型变量和原始类型变量的复制值

文章目录 ref定义及作用用法源码 实验一 修改原变量和ref后的值原始数据类型对象类型总结 实验二 props的ref ref定义及作用 可以将 ref 看成 reactive 的一个变形版本&#xff0c;这是由于 reactive 内部采用 Proxy 来实现&#xff0c;而 Proxy 只接受对象作为入参&#xff0…

blender的快捷键记录

按键作用备注R旋转物体移动、旋转或缩放物体时&#xff0c;按下X、Y或Z键&#xff1a;按X、Y或Z轴方向移动、旋转或缩放S缩放物体G移动物体TAB键切换为编辑模式CTRL A弹出应用菜单物体模式旋转缩放后应用旋转与缩放&#xff0c;再进入编辑模式SHIFT 鼠标右键移动游标位置SHIF…