【自然语言处理】【大模型】ChatGLM-6B模型结构代码解析(单机版)

news/2025/1/14 17:56:38/
ChatGLM-6B模型结构代码解析(单机版)

​ 本文介绍ChatGLM-6B的模型结构,代码来自https://huggingface.co/THUDM/chatglm-6b/blob/main/modeling_chatglm.py。

相关博客
【自然语言处理】【大模型】ChatGLM-6B模型结构代码解析(单机版)
【自然语言处理】【大模型】BLOOM模型结构源码解析(单机版)
【自然语言处理】【大模型】极低资源微调大模型方法LoRA以及BLOOM-LORA实现代码
【深度学习】【分布式训练】Collective通信操作及Pytorch示例
【自然语言处理】【大模型】Chinchilla:训练计算利用率最优的大语言模型
【自然语言处理】【大模型】大语言模型BLOOM推理工具测试
【自然语言处理】【大模型】GLM-130B:一个开源双语预训练语言模型
【自然语言处理】【大模型】用于大型Transformer的8-bit矩阵乘法介绍
【自然语言处理】【大模型】BLOOM:一个176B参数且可开放获取的多语言模型
【自然语言处理】【ChatGPT系列】FLAN:微调语言模型是Zero-Shot学习器
【自然语言处理】【ChatGPT系列】ChatGPT的智能来自哪里?
【自然语言处理】【ChatGPT系列】大模型的涌现能力

一、激活函数

​ ChatGLM-6B使用的激活函数为GELU,其可以近似实现为:
GELU ( x ) ≈ 0.5 x ( 1 + tanh ⁡ ( 2 π ( x + 0.044715 x 3 ) ) ) \text{GELU}(x)\approx 0.5x(1+\tanh(\sqrt{\frac{2}{\pi}}(x+0.044715x^3))) \\ GELU(x)0.5x(1+tanh(π2 (x+0.044715x3)))

@torch.jit.script
def gelu_impl(x):"""OpenAI's gelu implementation."""return 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * x *(1.0 + 0.044715 * x * x)))def gelu(x):return gelu_impl(x)

二、GLU层

​ 虽然在实现代码中命名为GLU,但这里实现的还是MLP层:
GLU ( X ) = GELU ( X W 1 ) W 2 \text{GLU}(X)=\text{GELU}(XW_1)W_2 GLU(X)=GELU(XW1)W2

class GLU(torch.nn.Module):def __init__(self, hidden_size, inner_hidden_size=None,layer_id=None, bias=True, activation_func=gelu, params_dtype=torch.float, empty_init=True):super(GLU, self).__init__()if empty_init:init_method = skip_initelse:init_method = default_initself.layer_id = layer_idself.activation_func = activation_func# Project to 4h.self.hidden_size = hidden_sizeif inner_hidden_size is None:inner_hidden_size = 4 * hidden_sizeself.inner_hidden_size = inner_hidden_sizeself.dense_h_to_4h = init_method(torch.nn.Linear,self.hidden_size,self.inner_hidden_size,bias=bias,dtype=params_dtype,)# Project back to h.self.dense_4h_to_h = init_method(torch.nn.Linear,self.inner_hidden_size,self.hidden_size,bias=bias,dtype=params_dtype,)def forward(self, hidden_states):"""hidden_states: [seq_len, batch, hidden_size]"""# [seq_len, batch, inner_hidden_size]# 投影intermediate_parallel = self.dense_h_to_4h(hidden_states)# 激活intermediate_parallel = self.activation_func(intermediate_parallel)# 投影output = self.dense_4h_to_h(intermediate_parallel)return output

三、位置编码:RoPE

1. 原理

​ 位置编码采用RoPE,推导过程很有启发性,建议去看原文:Transformer升级之路:2、博采众长的旋转式位置编码 - 科学空间。本文仅介绍其实现:

​ 总的来说,RoPE的目标是构建一个位置相关的投影矩阵,使得
( R m q ) ⊤ ( R n k ) = q ⊤ R m ⊤ R n k = q ⊤ R n − m k (\textbf{R}_m\textbf{q})^\top(\textbf{R}_n\textbf{k})=\textbf{q}^\top\textbf{R}_m^\top\textbf{R}_n\textbf{k}=\textbf{q}^\top\textbf{R}_{n-m}\textbf{k} \\ (Rmq)(Rnk)=qRmRnk=qRnmk
其中, q \textbf{q} q k \textbf{k} k分别对应注意力机制中的query和key向量, m m m n n n代表两个位置, R i \textbf{R}_i Ri表示位置 i i i处的投影矩阵。下面是作者建议 R \textbf{R} R的形式:
R θ , m d = [ cos ⁡ m θ 1 − sin ⁡ m θ 1 0 0 … 0 0 sin ⁡ m θ 1 cos ⁡ m θ 1 0 0 … 0 0 0 0 cos ⁡ m θ 2 − sin ⁡ m θ 2 … 0 0 0 0 sin ⁡ m θ 2 cos ⁡ m θ 2 … 0 0 ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 0 0 0 0 … cos ⁡ m θ d / 2 − sin ⁡ m θ d / 2 0 0 0 0 … sin ⁡ m θ d / 2 cos ⁡ m θ d / 2 ] \textbf{R}^{d}_{\theta,m}= \begin{bmatrix} \cos m\theta_1 & -\sin m\theta_1 & 0 & 0 & \dots & 0 & 0 \\ \sin m\theta_1 & \cos m\theta_1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & \cos m\theta_2 & -\sin m\theta_2 & \dots & 0 & 0 \\ 0 & 0 & \sin m\theta_2 & \cos m\theta_2 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \\ 0 & 0 & 0 & 0 & \dots & \cos m\theta_{d/2} & -\sin m\theta_{d/2} \\ 0 & 0 & 0 & 0 & \dots & \sin m\theta_{d/2} & \cos m\theta_{d/2} \end{bmatrix} Rθ,md= cosmθ1sinmθ10000sinmθ1cosmθ1000000cosmθ2sinmθ20000sinmθ2cosmθ2000000cosmθd/2sinmθd/20000sinmθd/2cosmθd/2
其中, d d d是query和key的维度, θ \theta θ是一个超参数。

通常, θ \theta θ会设置为
θ = { θ i = 1000 0 − 2 ( i − 1 ) d , i ∈ [ 1 , 2 , … , d 2 ] } \theta=\Big\{\theta_i=10000^{\frac{-2(i-1)}{d}},i\in[1,2,\dots,\frac{d}{2}]\Big\} θ={θi=10000d2(i1),i[1,2,,2d]}

由于矩阵 R \textbf{R} R非常稀疏,为了提供运算速度,作者也给出了实现方式,以query向量 q \textbf{q} q为例:
[ q 0 q 1 q 2 q 3 ⋮ q d − 2 q d − 1 ] ⊗ [ cos ⁡ m θ 0 cos ⁡ m θ 0 cos ⁡ m θ 1 cos ⁡ m θ 1 ⋮ cos ⁡ m θ d / 2 − 1 cos ⁡ m θ d / 2 − 1 ] + [ − q 1 q 0 − q 3 q 2 ⋮ − q d − 1 q d − 2 ] ⊗ [ sin ⁡ m θ 0 sin ⁡ m θ 0 sin ⁡ m θ 1 sin ⁡ m θ 1 ⋮ sin ⁡ m θ d / 2 − 1 sin ⁡ m θ d / 2 − 1 ] \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \\ \vdots \\ q_{d-2} \\ q_{d-1} \end{bmatrix} \otimes \begin{bmatrix} \cos m\theta_0 \\ \cos m\theta_0 \\ \cos m\theta_1 \\ \cos m\theta_1 \\ \vdots \\ \cos m\theta_{d/2-1} \\ \cos m\theta_{d/2-1} \end{bmatrix} + \begin{bmatrix} -q_1 \\ q_0 \\ -q_3 \\ q_2 \\ \vdots \\ -q_{d-1} \\ q_{d-2} \end{bmatrix} \otimes \begin{bmatrix} \sin m\theta_0 \\ \sin m\theta_0 \\ \sin m\theta_1 \\ \sin m\theta_1 \\ \vdots \\ \sin m\theta_{d/2-1} \\ \sin m\theta_{d/2-1} \end{bmatrix} \\ q0q1q2q3qd2qd1 cosmθ0cosmθ0cosmθ1cosmθ1cosmθd/21cosmθd/21 + q1q0q3q2qd1qd2 sinmθ0sinmθ0sinmθ1sinmθ1sinmθd/21sinmθd/21

2. 实现

​ ChatGLM-6B实现采用了PaLM的实现方式,不同于上面的公式:
[ q 0 ⋮ q d / 2 − 1 q d / 2 ⋮ q d − 1 ] ⊗ [ cos ⁡ m θ 0 ⋮ cos ⁡ m θ d / 2 − 1 cos ⁡ m θ 0 ⋮ cos ⁡ m θ d / 2 − 1 ] + [ − q d / 2 ⋮ − q d − 1 q 0 ⋮ q d / 2 − 1 ] ⊗ [ sin ⁡ m θ 0 ⋮ sin ⁡ m θ d / 2 − 1 sin ⁡ m θ 0 ⋮ sin ⁡ m θ d / 2 − 1 ] \begin{bmatrix} q_0 \\ \vdots \\ q_{d/2-1} \\ q_{d/2} \\ \vdots \\ q_{d-1}\end{bmatrix} \otimes \begin{bmatrix} \cos m\theta_0 \\ \vdots \\ \cos m\theta_{d/2-1} \\ \cos m\theta_0 \\ \vdots \\ \cos m\theta_{d/2-1} \end{bmatrix} + \begin{bmatrix} -q_{d/2} \\ \vdots \\ -q_{d-1} \\ q_0 \\ \vdots \\ q_{d/2-1}\end{bmatrix} \otimes \begin{bmatrix} \sin m\theta_0 \\ \vdots \\ \sin m\theta_{d/2-1} \\ \sin m\theta_0 \\ \vdots \\ \sin m\theta_{d/2-1} \end{bmatrix} q0qd/21qd/2qd1 cosmθ0cosmθd/21cosmθ0cosmθd/21 + qd/2qd1q0qd/21 sinmθ0sinmθd/21sinmθ0sinmθd/21
方便验证,该位置编码仍然满足对称性 ( R m q ) ⊤ ( R n k ) = q ⊤ R n − m k (\textbf{R}_m\textbf{q})^\top(\textbf{R}_n\textbf{k})=\textbf{q}^\top\textbf{R}_{n-m}\textbf{k} (Rmq)(Rnk)=qRnmk。但是其是如何推导而来的,暂时还没想清楚。

​ 在代码中,RotaryEmbedding负责预先计算sin和cos;rotate_half负责上式第二项中,互换向量的奇偶位以及取负操作;apply_rotary_pos_emb_index则是对输入的query和key注入RoPE。

class RotaryEmbedding(torch.nn.Module):def __init__(self, dim, base=10000, precision=torch.half, learnable=False):super().__init__()# 预先计算好上面的thetainv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))inv_freq = inv_freq.half()# learnable的效果并没有更好,通常learnable为Falseself.learnable = learnableif learnable:self.inv_freq = torch.nn.Parameter(inv_freq)self.max_seq_len_cached = Noneelse:self.register_buffer('inv_freq', inv_freq)self.max_seq_len_cached = Noneself.cos_cached = Noneself.sin_cached = Noneself.precision = precisiondef _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys,error_msgs):passdef forward(self, x, seq_dim=1, seq_len=None):if seq_len is None:seq_len = x.shape[seq_dim]if self.max_seq_len_cached is None or (seq_len > self.max_seq_len_cached):self.max_seq_len_cached = None if self.learnable else seq_lent = torch.arange(seq_len, device=x.device, dtype=self.inv_freq.dtype)# 这里使用了爱因斯坦求和约定,该操作就是t和self.inv_freq的外积# freqs中保存了所有的m\theta。e.g. 第一列是0\theta、第二列是1\thetafreqs = torch.einsum('i,j->ij', t, self.inv_freq)# 根据上面的公式,每个\theta都需要两份,所以这里将两个freqs拼接起来emb = torch.cat((freqs, freqs), dim=-1).to(x.device)if self.precision == torch.bfloat16:emb = emb.float()# [seq_length, 1 (b * np), hn]# 计算cos和sincos_cached = emb.cos()[:, None, :]sin_cached = emb.sin()[:, None, :]if self.precision == torch.bfloat16:cos_cached = cos_cached.bfloat16()sin_cached = sin_cached.bfloat16()if self.learnable:return cos_cached, sin_cached# 缓存结果,方便重复利用self.cos_cached, self.sin_cached = cos_cached, sin_cachedreturn self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...]def _apply(self, fn):if self.cos_cached is not None:self.cos_cached = fn(self.cos_cached)if self.sin_cached is not None:self.sin_cached = fn(self.sin_cached)return super()._apply(fn)def rotate_half(x):# x1是x的前半部分,x2是x的后半部分x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:]# 前后互换,且后半部分取负return torch.cat((-x2, x1), dim=x1.ndim - 1)@torch.jit.script
def apply_rotary_pos_emb_index(q, k, cos, sin, position_id):cos, sin = F.embedding(position_id, cos.squeeze(1)).unsqueeze(2), \F.embedding(position_id, sin.squeeze(1)).unsqueeze(2)q, k = (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)return q, k

四、注意力层

1. 原理

二维位置编码。这里仍然采用了GLM-10B的二维位置编码,如下图所示:

在这里插入图片描述

输入的样本是 x 1 , x 2 , x 3 , x 4 , x 5 , x 6 x_1,x_2,x_3,x_4,x_5,x_6 x1,x2,x3,x4,x5,x6,片段 x 3 x_3 x3 x 5 , x 6 x_5,x_6 x5,x6被随机挑选遮蔽掉,原始的输入样本变为 x 1 , x 2 , [ M ] , x 4 , [ M ] x_1,x_2,[M],x_4,[M] x1,x2,[M],x4,[M],这个过程如上图(a)和(b)所示。将三个片段拼接在一起得到模型的输入 x 1 , x 2 , [ M ] , x 4 , [ M ] , [ S ] , x 5 , x 6 , [ S ] , x 3 x_1,x_2,[M],x_4,[M],[S],x_5,x_6,[S],x_3 x1,x2,[M],x4,[M],[S],x5,x6,[S],x3,模型的输出则是被遮蔽掉的片段,如上图©所示。这里使用了2种位置编码:第一种编码为整个输入注入位置信息,能够表示遮蔽片段在原始输入中的位置;第二种位置编码则是为遮蔽片段内的tokens输入位置信息。

自注意力机制。标准的自注意力机制为:
Q = W q X K = W k X V = W v X Attention ( Q , K , V , A ) = softmax ( Q K T d k ) V \begin{align} Q &= W_q X \\ K &= W_k X \\ V &= W_v X \\ \text{Attention}(Q,K,V,A) &= \text{softmax}(\frac{QK^T}{\sqrt{d_k}})V \end{align} \\ QKVAttention(Q,K,V,A)=WqX=WkX=WvX=softmax(dk QKT)V
其中,X是输入, W q , W k , W v W_q,W_k,W_v Wq,Wk,Wv 分别是query、key、value的投影矩阵。相比于标准的注意力机制,ChatGLM-6B在 Q Q Q K K K中注意力了RoPE位置信息。多头注意力就是将多个单头注意力的结果拼接起来。
head i = Attention ( Q i , K i , V i , A i ) MultiHead ( Q , K , V , A ) = Concat ( head 1 , … , head h ) W o \begin{align} \text{head}_i&=\text{Attention}(Q_i,K_i,V_i,A_i) \\ \text{MultiHead}(Q,K,V,A)&=\text{Concat}(\text{head}_1,\dots,\text{head}_h)W_o \end{align} \\ headiMultiHead(Q,K,V,A)=Attention(Qi,Ki,Vi,Ai)=Concat(head1,,headh)Wo

2. 实现

  • 函数attention_fn实现了标准的自注意力机制。
def attention_fn(self,query_layer,key_layer,value_layer,attention_mask,hidden_size_per_partition,layer_id,layer_past=None,scaling_attention_score=True,use_cache=False,
):# 将传递来的key和value合并至当前的Q和K上(推理场景)if layer_past is not None:past_key, past_value = layer_past[0], layer_past[1]key_layer = torch.cat((past_key, key_layer), dim=0)value_layer = torch.cat((past_value, value_layer), dim=0)# seqlen, batch, num_attention_heads, hidden_size_per_attention_headseq_len, b, nh, hidden_size = key_layer.shapeif use_cache:present = (key_layer, value_layer)else:present = None# 对query层进行scalingquery_key_layer_scaling_coeff = float(layer_id + 1)if scaling_attention_score:query_layer = query_layer / (math.sqrt(hidden_size) * query_key_layer_scaling_coeff)# 注意力分数的输出形状: [batch_size, num_heads, seq_length, seq_length]output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0))# 形状重塑:[seq_length, batch_size, num_heads, head_dim] -># [seq_length, batch_size*num_heads, head_dim]query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)matmul_result = torch.zeros(1, 1, 1,dtype=query_layer.dtype,device=query_layer.device,)# 计算非规范化的注意力分数,matmul_result形状为[batch_size*num_head, seq_length,seq_length]matmul_result = torch.baddbmm(matmul_result,query_layer.transpose(0, 1),  # [b * np, sq, hn]key_layer.transpose(0, 1).transpose(1, 2),  # [b * np, hn, sk]beta=0.0,alpha=1.0,)# 重塑形状为:[batch_size,num_head,seq_length,seq_length]attention_scores = matmul_result.view(*output_size)# 对注意分数进行缩放和规范化if self.scale_mask_softmax:self.scale_mask_softmax.scale = query_key_layer_scaling_coeffattention_probs = self.scale_mask_softmax(attention_scores, attention_mask.contiguous())else:# 对注意力分数进行maskif not (attention_mask == 0).all():attention_scores.masked_fill_(attention_mask, -10000.0)dtype = attention_scores.dtypeattention_scores = attention_scores.float()attention_scores = attention_scores * query_key_layer_scaling_coeffattention_probs = F.softmax(attention_scores, dim=-1)attention_probs = attention_probs.type(dtype)### 使用注意力分数对value进行加权求和output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3))# 重塑value的形状value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1)# 重塑注意力分数的形状attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)# 注意力分数乘以value,得到最终的输出contextcontext_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))context_layer = context_layer.view(*output_size)context_layer = context_layer.permute(2, 0, 1, 3).contiguous()new_context_layer_shape = context_layer.size()[:-2] + (hidden_size_per_partition,)context_layer = context_layer.view(*new_context_layer_shape)outputs = (context_layer, present, attention_probs)return outputs
  • SelfAttention则是为query和key注入RoPE,然后调用attention_fn实现注意力机制。
class SelfAttention(torch.nn.Module):def __init__(self, hidden_size, num_attention_heads,layer_id, hidden_size_per_attention_head=None, bias=True,params_dtype=torch.float, position_encoding_2d=True, empty_init=True):if empty_init:init_method = skip_initelse:init_method = default_initsuper(SelfAttention, self).__init__()self.layer_id = layer_idself.hidden_size = hidden_sizeself.hidden_size_per_partition = hidden_sizeself.num_attention_heads = num_attention_headsself.num_attention_heads_per_partition = num_attention_heads# position_encoding_2d:是否使用2维的位置编码self.position_encoding_2d = position_encoding_2d# RoPEself.rotary_emb = RotaryEmbedding(self.hidden_size // (self.num_attention_heads * 2)if position_encoding_2delse self.hidden_size // self.num_attention_heads,base=10000,precision=torch.half,learnable=False,)self.scale_mask_softmax = Noneif hidden_size_per_attention_head is None:self.hidden_size_per_attention_head = hidden_size // num_attention_headselse:self.hidden_size_per_attention_head = hidden_size_per_attention_headself.inner_hidden_size = num_attention_heads * self.hidden_size_per_attention_head# query、key、value的投影层self.query_key_value = init_method(torch.nn.Linear,hidden_size,3 * self.inner_hidden_size,bias=bias,dtype=params_dtype,)self.dense = init_method(torch.nn.Linear,self.inner_hidden_size,hidden_size,bias=bias,dtype=params_dtype,)@staticmethoddef attention_mask_func(attention_scores, attention_mask):attention_scores.masked_fill_(attention_mask, -10000.0)return attention_scoresdef split_tensor_along_last_dim(self, tensor, num_partitions,contiguous_split_chunks=False):"""沿最后一个维度切分tensor参数:tensor: 输入tensor;num_partitions: 切分tensor的数量;contiguous_split_chunks: 若为True,切分的块在内存中连续;"""last_dim = tensor.dim() - 1last_dim_size = tensor.size()[last_dim] // num_partitionstensor_list = torch.split(tensor, last_dim_size, dim=last_dim)# torch.split并不会默认创建连续的tensorif contiguous_split_chunks:return tuple(chunk.contiguous() for chunk in tensor_list)return tensor_listdef forward(self,hidden_states: torch.Tensor,position_ids,attention_mask: torch.Tensor,layer_id,layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,use_cache: bool = False,output_attentions: bool = False,):"""hidden_states: [seq_len, batch, hidden_size]attention_mask: [(1, 1), seq_len, seq_len]"""# 一次性得到投影的Q、K、V,减少执行矩阵乘法的次数# [seq_len, batch, 3 * hidden_size]mixed_raw_layer = self.query_key_value(hidden_states)# 拆分出多头# [seq_len, batch, 3 * hidden_size] --> [seq_len, batch, num_attention_heads, 3 * hidden_size_per_attention_head]new_tensor_shape = mixed_raw_layer.size()[:-1] + (self.num_attention_heads_per_partition,3 * self.hidden_size_per_attention_head,)mixed_raw_layer = mixed_raw_layer.view(*new_tensor_shape)# [seq_len, batch, num_attention_heads, hidden_size_per_attention_head]# 此时的query_layer、key_layer、value_layer已经是拆分出多头的Q、K、V(query_layer, key_layer, value_layer) = self.split_tensor_along_last_dim(mixed_raw_layer, 3)if self.position_encoding_2d:## 这里将query和key拆分为两份,分别注入不同的位置信息,然后再拼接在一起# 拆分q1, q2 = query_layer.chunk(2, dim=(query_layer.ndim - 1))k1, k2 = key_layer.chunk(2, dim=(key_layer.ndim - 1))# 计算cos和sin值cos, sin = self.rotary_emb(q1, seq_len=position_ids.max() + 1)position_ids, block_position_ids = position_ids[:, 0, :].transpose(0, 1).contiguous(), \position_ids[:, 1, :].transpose(0, 1).contiguous()# 将两种位置编码输入到不同的query和key上q1, k1 = apply_rotary_pos_emb_index(q1, k1, cos, sin, position_ids)q2, k2 = apply_rotary_pos_emb_index(q2, k2, cos, sin, block_position_ids)# 拼接注入不同位置信息的query和key,这样query和key中包含了两种位置信息query_layer = torch.concat([q1, q2], dim=(q1.ndim - 1))key_layer = torch.concat([k1, k2], dim=(k1.ndim - 1))else:# 普通的RoPEposition_ids = position_ids.transpose(0, 1)cos, sin = self.rotary_emb(value_layer, seq_len=position_ids.max() + 1)# [seq_len, batch, num_attention_heads, hidden_size_per_attention_head]query_layer, key_layer = apply_rotary_pos_emb_index(query_layer, key_layer, cos, sin, position_ids)# [seq_len, batch, hidden_size]context_layer, present, attention_probs = attention_fn(self=self,query_layer=query_layer,key_layer=key_layer,value_layer=value_layer,attention_mask=attention_mask,hidden_size_per_partition=self.hidden_size_per_partition,layer_id=layer_id,layer_past=layer_past,use_cache=use_cache)output = self.dense(context_layer)outputs = (output, present)if output_attentions:outputs += (attention_probs,)return outputs  # output, present, attention_probs	

五、GLMBlock

​ GLMBlock的基本结构为:Layer Norm、Self Attention(输入和输出残差连接)、Layer Norm、GLU(输入和输出残差连接)。
在这里插入图片描述

class GLMBlock(torch.nn.Module):def __init__(self,hidden_size,num_attention_heads,layernorm_epsilon,layer_id,inner_hidden_size=None,hidden_size_per_attention_head=None,layernorm=LayerNorm,use_bias=True,params_dtype=torch.float,num_layers=28,position_encoding_2d=True,empty_init=True):super(GLMBlock, self).__init__()# Set output layer initialization if not provided.self.layer_id = layer_id# LayerNorm层self.input_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)# 是否使用2维位置编码self.position_encoding_2d = position_encoding_2d# 自注意力层self.attention = SelfAttention(hidden_size,num_attention_heads,layer_id,hidden_size_per_attention_head=hidden_size_per_attention_head,bias=use_bias,params_dtype=params_dtype,position_encoding_2d=self.position_encoding_2d,empty_init=empty_init)# Post Layer Norm层self.post_attention_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)self.num_layers = num_layers# GLU层self.mlp = GLU(hidden_size,inner_hidden_size=inner_hidden_size,bias=use_bias,layer_id=layer_id,params_dtype=params_dtype,empty_init=empty_init)def forward(self,hidden_states: torch.Tensor,position_ids,attention_mask: torch.Tensor,layer_id,layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,use_cache: bool = False,output_attentions: bool = False,):"""hidden_states: [seq_len, batch, hidden_size]attention_mask: [(1, 1), seq_len, seq_len]"""# 对输入进行Layer Norm# [seq_len, batch, hidden_size]attention_input = self.input_layernorm(hidden_states)# 自注意力attention_outputs = self.attention(attention_input,position_ids,attention_mask=attention_mask,layer_id=layer_id,layer_past=layer_past,use_cache=use_cache,output_attentions=output_attentions)attention_output = attention_outputs[0]outputs = attention_outputs[1:]# 自注意力的输出和输入残差连接alpha = (2 * self.num_layers) ** 0.5hidden_states = attention_input * alpha + attention_output# Layer Normmlp_input = self.post_attention_layernorm(hidden_states)# 全连接层投影mlp_output = self.mlp(mlp_input)# MLP层的输出和输入残差连接output = mlp_input * alpha + mlp_outputif use_cache:outputs = (output,) + outputselse:outputs = (output,) + outputs[1:]return outputs  # hidden_states, present, attentions

六、ChatGLMPreTrainedModel

ChatGLMPreTrainedModelChatGLMModelChatGLMForConditionalGeneration其提供获取注意力mask和position ids

1. Mask

在这里插入图片描述

​ ChatGLM-6B使用的Mask仍然是prefix-LM的Mask,其对于输入的前缀使用双向注意力,对于后续的生成部分则是Causal Mask。下面是ChatGLMPreTrainedModel中的get_masks函数实现:

def get_masks(self, input_ids, device):batch_size, seq_length = input_ids.shape# context_lengths记录了batch中每个样本的真实长度context_lengths = [seq.tolist().index(self.config.bos_token_id) for seq in input_ids]# 生成causal mask,即下三角以及对角线为1,上三角为0attention_mask = torch.ones((batch_size, seq_length, seq_length), device=device)attention_mask.tril_()# 将前缀部分的注意力改为双向for i, context_length in enumerate(context_lengths):attention_mask[i, :, :context_length] = 1attention_mask.unsqueeze_(1)attention_mask = (attention_mask < 0.5).bool()return attention_mask

2. Position_ids

在介绍注意力层的时候,已经介绍过2维的postion_ids了。代码实现中,position_ids就是GLM论文中的Position 1,block_position_ids则是论文中的Position 2。

def get_position_ids(self, input_ids, mask_positions, device, use_gmasks=None):"""input_ids: [batch_size, seq_length]mask_positions: [batch_size],由于GLM系列中会使用[Mask]或[gMask]标志,mask_positions就是指这些标注的具体位置"""batch_size, seq_length = input_ids.shapeif use_gmasks is None:use_gmasks = [False] * batch_size# context_lengths:未被padding前,batch中各个样本的长度context_lengths = [seq.tolist().index(self.config.bos_token_id) for seq in input_ids]# 2维位置编码if self.position_encoding_2d:# [0,1,2,...,seq_length-1]position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)# 将原始输入后所有位置的postion id都设置为[Mask]或者[gMask]的位置id# (该操作见注意力层对位置编码的介绍)for i, context_length in enumerate(context_lengths):position_ids[i, context_length:] = mask_positions[i]# 原始输入的位置编码全部设置为0,待生成的位置添加顺序的位置id# 例如:[0,0,0,0,1,2,3,4,5]block_position_ids = [torch.cat((torch.zeros(context_length, dtype=torch.long, device=device),torch.arange(seq_length - context_length, dtype=torch.long, device=device) + 1)) for context_length in context_lengths]block_position_ids = torch.stack(block_position_ids, dim=0)# 将postion_ids和block_position_ids堆叠在一起,用于后续的参数传入;# 在注意力层中,还有将这个position_ids拆分为两部分position_ids = torch.stack((position_ids, block_position_ids), dim=1)else:position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)for i, context_length in enumerate(context_lengths):if not use_gmasks[i]:position_ids[i, context_length:] = mask_positions[i]return position_ids

七、ChatGLMModel

​ ChatGLMModel基本就是通过上面介绍的各个组件构造最终的模型。原理没什么可介绍了,直接来看代码。下面的代码会将不易于理解模型结构的部分删除掉,因此与原始版本略有不同。

class ChatGLMModel(ChatGLMPreTrainedModel):def __init__(self, config: ChatGLMConfig, empty_init=True):super().__init__(config)if empty_init:init_method = skip_initelse:init_method = default_init# 保存各类参数self.max_sequence_length = config.max_sequence_lengthself.hidden_size = config.hidden_sizeself.params_dtype = torch.halfself.num_attention_heads = config.num_attention_headsself.vocab_size = config.vocab_sizeself.num_layers = config.num_layersself.layernorm_epsilon = config.layernorm_epsilonself.inner_hidden_size = config.inner_hidden_sizeself.hidden_size_per_attention_head = self.hidden_size // self.num_attention_headsself.position_encoding_2d = config.position_encoding_2dself.pre_seq_len = config.pre_seq_lenself.prefix_projection = config.prefix_projection# 初始化embedding层self.word_embeddings = init_method(torch.nn.Embedding,num_embeddings=self.vocab_size, embedding_dim=self.hidden_size,dtype=self.params_dtype)self.gradient_checkpointing = Falsedef get_layer(layer_id):return GLMBlock(self.hidden_size,self.num_attention_heads,self.layernorm_epsilon,layer_id,inner_hidden_size=self.inner_hidden_size,hidden_size_per_attention_head=self.hidden_size_per_attention_head,layernorm=LayerNorm,use_bias=True,params_dtype=self.params_dtype,position_encoding_2d=self.position_encoding_2d,empty_init=empty_init)# 堆叠GLMBlockself.layers = torch.nn.ModuleList([get_layer(layer_id) for layer_id in range(self.num_layers)])# 最后的Layer Norm层self.final_layernorm = LayerNorm(self.hidden_size, eps=self.layernorm_epsilon)def get_input_embeddings(self):return self.word_embeddingsdef set_input_embeddings(self, new_embeddings: torch.Tensor):self.word_embeddings = new_embeddings@add_start_docstrings_to_model_forward(CHATGLM_6B_INPUTS_DOCSTRING.format("batch_size, sequence_length"))@add_code_sample_docstrings(checkpoint=_CHECKPOINT_FOR_DOC,output_type=BaseModelOutputWithPastAndCrossAttentions,config_class=_CONFIG_FOR_DOC,)def forward(self,input_ids: Optional[torch.LongTensor] = None,position_ids: Optional[torch.LongTensor] = None,attention_mask: Optional[torch.Tensor] = None,past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,inputs_embeds: Optional[torch.LongTensor] = None,use_cache: Optional[bool] = None,output_attentions: Optional[bool] = None,output_hidden_states: Optional[bool] = None,return_dict: Optional[bool] = None,) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPast]:### (开始)一些输入输入和参数设置,可以忽略output_attentions = output_attentions if output_attentions is not None else self.config.output_attentionsoutput_hidden_states = (output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states)use_cache = use_cache if use_cache is not None else self.config.use_cachereturn_dict = return_dict if return_dict is not None else self.config.use_return_dictif self.gradient_checkpointing and self.training:if use_cache:logger.warning_once("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")use_cache = Falseif input_ids is not None and inputs_embeds is not None:raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")elif input_ids is not None:batch_size, seq_length = input_ids.shape[:2]elif inputs_embeds is not None:batch_size, seq_length = inputs_embeds.shape[:2]else:raise ValueError("You have to specify either input_ids or inputs_embeds")### (结束)一些输入输出和参数设置,可以忽略# embedding层if inputs_embeds is None:inputs_embeds = self.word_embeddings(input_ids)if past_key_values is None:past_key_values = tuple([None] * len(self.layers))# 获得注意力mask,该功能继承自ChatGLMPreTrainedModelif attention_mask is None:attention_mask = self.get_masks(input_ids,device=input_ids.device)if position_ids is None:MASK, gMASK = self.config.mask_token_id, self.config.gmask_token_idseqs = input_ids.tolist()# 记录input_ids中是否使用了mask以及mask的位置# mask_positions记录每个样本中mask的位置# use_gmasks记录是否使用了gMaskmask_positions, use_gmasks = [], []for seq in seqs:mask_token = gMASK if gMASK in seq else MASKuse_gmask = mask_token == gMASKmask_positions.append(seq.index(mask_token))use_gmasks.append(use_gmask)# 获得position_ids,该功能继承自ChatGLMPreTrainedModelposition_ids = self.get_position_ids(input_ids,mask_positions=mask_positions,device=input_ids.device,use_gmasks=use_gmasks)# [seq_len, batch, hidden_size]hidden_states = inputs_embeds.transpose(0, 1)presents = () if use_cache else Noneall_self_attentions = () if output_attentions else Noneall_hidden_states = () if output_hidden_states else Noneif attention_mask is None:attention_mask = torch.zeros(1, 1, device=input_ids.device).bool()else:attention_mask = attention_mask.to(hidden_states.device)# 模型的前向传播for i, layer in enumerate(self.layers):if output_hidden_states:all_hidden_states = all_hidden_states + (hidden_states,)layer_past = past_key_values[i]if self.gradient_checkpointing and self.training:layer_ret = torch.utils.checkpoint.checkpoint(layer,hidden_states,position_ids,attention_mask,torch.tensor(i),layer_past,use_cache,output_attentions)else:layer_ret = layer(hidden_states,position_ids=position_ids,attention_mask=attention_mask,layer_id=torch.tensor(i),layer_past=layer_past,use_cache=use_cache,output_attentions=output_attentions)hidden_states = layer_ret[0]if use_cache:presents = presents + (layer_ret[1],)if output_attentions:all_self_attentions = all_self_attentions + (layer_ret[2 if use_cache else 1],)# 最终的Layer Normhidden_states = self.final_layernorm(hidden_states)if output_hidden_states:all_hidden_states = all_hidden_states + (hidden_states,)if not return_dict:return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)return BaseModelOutputWithPast(last_hidden_state=hidden_states,past_key_values=presents,hidden_states=all_hidden_states,attentions=all_self_attentions,)

http://www.ppmy.cn/news/104281.html

相关文章

Dubbo配置

dubbo配置官网参考 1.配置原则 JVM 启动 -D 参数优先&#xff0c;这样可以使用户在部署和启动时进行参数重写&#xff0c;比如在启动时需改变协议的端口。 XML 次之&#xff0c;如果在 XML 中有配置&#xff0c;则 dubbo.properties 中的相应配置项无效。 Properties 最后&a…

python-sqlite3使用指南

python下sqlite3使用指南 文章目录 python下sqlite3使用指南开发环境sqlite3常用APICRUD实例参考 开发环境 vscode ​ 开发语言&#xff1a; python vscode SQLite插件使用方法&#xff1a; 之后在这里就可以发现可视化数据&#xff1a; sqlite3常用API Python 2.5.x 以上…

GoogleTest之gMock: Macros

目录 EXPECT_CALL EXPECT_CALL EXPECT_CALL(mock_object,method_name(matchers...)) 创建一个mock对象mock_object&#xff0c;这个对象有一个名为method_name的方法&#xff0c;方法的参数为matchers…。 EXPECT_CALL必须在任何mock对象之前使用。 以下方法的调用&#xff0c…

日撸 Java 三百行day56-57

文章目录 day56-57 kMeans 聚类1.kMeans聚类理解2.代码理解2.1代码中变量的理解2.2代码理解 day56-57 kMeans 聚类 1.kMeans聚类理解 无监督的机器学习算法&#xff0c;其中k是划分为几个簇&#xff0c;并且选择k个数据作为不同簇的聚类中心&#xff0c;计算每个数据样本和聚…

redux与react-redux状态集中管理

一、redux:可用于react、Vue等中 redux应用&#xff1a;状态的管理&#xff0c;共享状态&#xff0c;Redux用一个单独的常量状态树&#xff08;state对象&#xff09;保存这一整个应用&#xff08;如tab选项卡的状态、城市等需要应用在整个页面的信息&#xff09;的状态。其本…

Windows下利用Anaconda创建多个CUDA环境

参考 https://blog.csdn.net/qq_42395917/article/details/126237388 https://blog.csdn.net/qq_42406643/article/details/109545766 (待学习补充) https://blog.csdn.net/qq_43919533/article/details/125694437 (待学习补充) 安装cudatoolkit和cudnn # 前提是我已经安装了…

JAVA基础 - 如何使用split方法?

写在前面 在工作中一直使用split进行字串的分隔&#xff0c;但是始终没有认真研究过该方法&#xff0c;今天在使用该方法时遇到了一些问题&#xff0c;特进行学习记录。 遇到的问题 在使用“|”作为字串的分隔符的时候&#xff0c;分隔结果和预期不一样。 方法定义 // 从方…

Android使用多模块+MVI+Koin+Flow构建项目框架

Android使用多模块MVIKoinFlow构建项目框架 前言模块路由核心接口&#xff0c;用于在模块中绑定路由对应关系使用建造者模式定义传递的参数创建路由加载核心类, 本质上包含了一个全局路由表跳转类使用 MVI封装介绍&#xff0c;本质上使用flow作为核心定义数据类型&#xff0c;该…