【傅里叶级数与傅里叶变换】数学推导——2、[Part2:T = 2 π的周期函数的傅里叶级数展开] 及 [Part3:周期为2L的函数展开]

news/2024/11/18 14:26:49/

文章内容来自DR_CAN关于傅里叶变换的视频,本篇文章提供了一些基础知识点,比如三角函数常用的导数、三角函数换算公式等。

文章全部链接:
基础知识点
Part1:三角函数系的正交性
Part2:T=2π的周期函数的傅里叶级数展开
Part3:周期为T=2L的函数展开
Part4:傅里叶级数的复数形式
Part5:从傅里叶级数推导傅里叶变换
总结



Part2: T = 2 π T = 2 \pi T=2π的周期函数的傅里叶级数展开

假设周期 T = 2 π T = 2 \pi T=2π,将一个周期函数展开为傅里叶级数如下:
f ( x ) = ∑ n = 1 ∞ ( a n c o s n x + b n s i n n x ) = a 0 2 + ∑ n = 1 ∞ ( a n c o s n x + b n s i n n x ) \begin{align} f(x) &= \sum_{n=1}^{\infty} (a_n cos nx + b_n sin nx) = \frac{a_0} {2} + \sum_{n = 1}^{\infty} \left ( a_n cos nx + b_n sin nx \right) & \end{align} f(x)=n=1(ancosnx+bnsinnx)=2a0+n=1(ancosnx+bnsinnx)

计算函数中的相关系数 a 0 a_0 a0 a n a_n an b n b_n bn


第一步,求解 a 0 a_0 a0,对 f ( x ) f(x) f(x) [ − π , π ] [-\pi, \pi] [π,π]之间计算积分 ∫ − π π f ( x ) d x \int_{- \pi}^{\pi} f(x)dx ππf(x)dx,即为:
∫ − π π f ( x ) d x = a 0 2 ∫ − π π 1 d x + ∫ − π π ∑ n = 1 ∞ a n c o s n x d x + ∫ − π π ∑ n = 1 ∞ b n s i n n x d x \begin{align} & \int_{- \pi}^{\pi} f(x)dx = \frac{a_0}{2} \int_{- \pi}^{\pi} 1 dx + \int_{- \pi}^{\pi} \sum_{n = 1}^{\infty} a_n cos nx dx +\int_{- \pi}^{\pi} \sum_{n = 1}^{\infty} b_n sin nx dx & \end{align} ππf(x)dx=2a0ππ1dx+ππn=1ancosnxdx+ππn=1bnsinnxdx
计算上式第2项
∫ − π π ∑ 1 ∞ a n c o s n x d x = ∫ − π π a 1 c o s x d x + ∫ − π π a 2 c o s 2 x d x + . . . + ∫ − π π a n c o s n x d x + . . . = a 1 ∫ − π π c o s x d x + a 2 ∫ − π π c o s 2 x d x + . . . + a n ∫ − π π c o s n x d x + . . . \begin{align} \int_{- \pi}^{\pi} \sum_1^{\infty} a_n cos nx dx &= \int_{- \pi}^{\pi} a_1 cos x dx + \int_{- \pi}^{\pi} a_2 cos 2x dx + ... + \int_{- \pi}^{\pi} a_n cos nx dx + ... \\ &= a_1 \int_{- \pi}^{\pi} cos x dx + a_2 \int_{- \pi}^{\pi} cos 2x dx + ... + a_n \int_{- \pi}^{\pi} cos nx dx + ... & \end{align} ππ1ancosnxdx=ππa1cosxdx+ππa2cos2xdx+...+ππancosnxdx+...=a1ππcosxdx+a2ππcos2xdx+...+anππcosnxdx+...
根据三角函数的正交性, ∫ − π π ∑ n = 1 ∞ a n c o s n x d x = 0 \int_{- \pi}^{\pi} \sum_{n = 1}^{\infty} a_n cos nx dx = 0 ππn=1ancosnxdx=0

计算第3项

∫ − π π ∑ 1 ∞ b n s i n n x d x = ∫ − π π b 1 s i n x d x + ∫ − π π b 2 s i n 2 x d x + . . . + ∫ − π π b n s i n n x d x + . . . = b 1 ∫ − π π s i n x d x + b 2 ∫ − π π s i n 2 x d x + . . . + b n ∫ − π π s i n n x d x + . . . \begin{align} \int_{- \pi}^{\pi} \sum_1^{\infty} b_n sin nx dx &= \int_{- \pi}^{\pi} b_1 sin x dx + \int_{- \pi}^{\pi} b_2 sin 2x dx + ... + \int_{- \pi}^{\pi} b_n sin nx dx + ... \\ &= b_1 \int_{- \pi}^{\pi} sin x dx + b_2 \int_{- \pi}^{\pi} sin 2x dx + ... + b_n \int_{- \pi}^{\pi} sin nx dx + ... &\end{align} ππ1bnsinnxdx=ππb1sinxdx+ππb2sin2xdx+...+ππbnsinnxdx+...=b1ππsinxdx+b2ππsin2xdx+...+bnππsinnxdx+...
根据三角函数正交性, ∫ − π π ∑ n = 1 ∞ b n s i n n x d x = 0 \int_{- \pi}^{\pi} \sum_{n = 1}^{\infty} b_n sin nx dx = 0 ππn=1bnsinnxdx=0

那么 ∫ − π π f ( x ) d x = a 0 2 ∫ − π π 1 d x = a 0 2 x ∣ − π π = a 0 2 2 π = π a 0 \int_{- \pi}^{\pi} f(x)dx = \frac{a_0}{2} \int_{- \pi}^{\pi} 1 dx = \frac{a_0}{2} x|_{- \pi}^{\pi} = \frac{a_0}{2} 2 \pi = \pi a_0 ππf(x)dx=2a0ππ1dx=2a0xππ=2a02π=πa0,计算求得:

a 0 = 1 π ∫ − π π f ( x ) d x \begin{align} & a_0 = \frac{1}{\pi}\int_{- \pi}^{\pi} f(x)dx & \end{align} a0=π1ππf(x)dx


第二步,计算 a n a_n an,等号两边同时乘以 c o s m x cos mx cosmx,然后在 [ − π , π ] [-\pi, \pi] [π,π]区间内求积分。如下:

∫ − π π f ( x ) c o s m x d x = a 0 2 ∫ − π π c o s m x d x + ∫ − π π ∑ n = 1 ∞ a n c o s n x c o s m x d x + ∫ − π π ∑ n = 1 ∞ b n s i n n x c o s m x d x \begin{align} & \int_{- \pi}^{\pi} f(x) cos mx dx = \frac{a_0}{2} \int_{- \pi}^{\pi} cosmx dx + \int_{- \pi}^{\pi} \sum_{n = 1}^{\infty} a_n cos nx cos mx dx + \int_{- \pi}^{\pi} \sum_{n = 1}^{\infty} b_n sin nx cos mx dx & \end{align} ππf(x)cosmxdx=2a0ππcosmxdx+ππn=1ancosnxcosmxdx+ππn=1bnsinnxcosmxdx

计算第一项结果为0

a 0 2 ∫ − π π c o s m x d x = a 0 2 ∫ − π π c o s 0 x c o s m x d x = 0 \begin{align} &\frac{a_0}{2} \int_{- \pi}^{\pi} cosmx dx = \frac{a_0}{2} \int_{- \pi}^{\pi} cos 0x cosmx dx = 0 & \end{align} 2a0ππcosmxdx=2a0ππcos0xcosmxdx=0

计算第二项

∫ − π π ∑ n = 1 ∞ a n c o s n x c o s m x d x = ∫ − π π a 1 c o s x c o s m x d x + ∫ − π π a 2 c o s 2 x c o s m x d x + . . . + ∫ − π π a n c o s n x c o s m x d x + . . . = a 1 ∫ − π π c o s x c o s m x d x + a 2 ∫ − π π c o s 2 x c o s m x d x + . . . + a n ∫ − π π c o s n x c o s m x d x + . . . \begin{align} \int_{- \pi}^{\pi} \sum_{n = 1}^{\infty} a_n cos nx cos mx dx &= \int_{- \pi}^{\pi} a_1 cos x cos mx dx + \int_{- \pi}^{\pi} a_2 cos 2x cos mx dx + ... + \int_{- \pi}^{\pi} a_n cos nx cos mx dx + ... \\ & = a_1 \int_{- \pi}^{\pi} cos x cos mx dx + a_2 \int_{- \pi}^{\pi} cos 2x cos mx dx + ... + a_n \int_{- \pi}^{\pi} cos nx cos mx dx + ... & \end{align} ππn=1ancosnxcosmxdx=ππa1cosxcosmxdx+ππa2cos2xcosmxdx+...+ππancosnxcosmxdx+...=a1ππcosxcosmxdx+a2ππcos2xcosmxdx+...+anππcosnxcosmxdx+...

m ≠ n m \ne n m=n

a n ∫ − π π c o s n x c o s m x d x = 0 \begin{align} & a_n \int_{- \pi}^{\pi} cos nx cos mx dx = 0 & \end{align} anππcosnxcosmxdx=0

m = n m=n m=n时,根据三角函数平方公式可得 ∫ − π π c o s n x c o s n x d x = 1 2 [ ∫ − π π 1 d x + ∫ − π π c o s 2 n x d x ] = π \int_{- \pi}^{\pi} cos nx cos nx dx = \frac{1}{2} \left [\int_{- \pi}^{\pi}1dx + \int_{- \pi}^{\pi}cos 2nxdx \right] = \pi ππcosnxcosnxdx=21[ππ1dx+ππcos2nxdx]=π,该项只会保留当 m = n m=n m=n时的结果,即:

∫ − π π ∑ n = 1 ∞ a n c o s n x c o s m x d x = ∫ − π π a n c o s n x c o s n x d x = π a n \begin{align} & \int_{- \pi}^{\pi} \sum_{n = 1}^{\infty} a_n cos nx cos mx dx = \int_{- \pi}^{\pi} a_n cos nx cos nx dx = \pi a_n & \end{align} ππn=1ancosnxcosmxdx=ππancosnxcosnxdx=πan

计算第三项

∫ − π π ∑ n = 1 ∞ b n s i n n x c o s m x d x = ∫ − π π a 1 s i n x c o s m x d x + ∫ − π π a 2 s i n 2 x c o s m x d x + . . . + ∫ − π π a n s i n n x c o s m x d x + . . . = a 1 ∫ − π π s i n x c o s m x d x + a 2 ∫ − π π s i n 2 x c o s m x d x + . . . + a n ∫ − π π s i n n x c o s m x d x + . . . \begin{align} \int_{- \pi}^{\pi} \sum_{n = 1}^{\infty} b_n sin nx cos mx dx &= \int_{- \pi}^{\pi} a_1 sin x cos mx dx + \int_{- \pi}^{\pi} a_2 sin 2x cos mx dx + ... + \int_{- \pi}^{\pi} a_n sin nx cos mx dx + ... \\ & = a_1 \int_{- \pi}^{\pi} sin x cos mx dx + a_2 \int_{- \pi}^{\pi} sin 2x cos mx dx + ... + a_n \int_{- \pi}^{\pi} sin nx cos mx dx + ... & \end{align} ππn=1bnsinnxcosmxdx=ππa1sinxcosmxdx+ππa2sin2xcosmxdx+...+ππansinnxcosmxdx+...=a1ππsinxcosmxdx+a2ππsin2xcosmxdx+...+anππsinnxcosmxdx+...

由正交性可得第三项为0:

∫ − π π ∑ n = 1 ∞ b n s i n n x c o s m x d x = 0 \begin{align} &\int_{- \pi}^{\pi} \sum_{n = 1}^{\infty} b_n sin nx cos mx dx = 0 & \end{align} ππn=1bnsinnxcosmxdx=0

那么就有:

∫ − π π f ( x ) c o s n x d x = ∫ − π π ∑ n = 1 ∞ a n c o s n x c o s m x d x = π a n ⇒ a n = 1 π ∫ − π π f ( x ) c o s n x d x \begin{align} & \int_{- \pi}^{\pi} f(x) cos nx dx = \int_{- \pi}^{\pi} \sum_{n = 1}^{\infty} a_n cos nx cos mx dx = \pi a_n \\ & \Rightarrow \\ & a_n = \frac{1}{\pi} \int_{- \pi}^{\pi} f(x) cos nx dx &\end{align} ππf(x)cosnxdx=ππn=1ancosnxcosmxdx=πanan=π1ππf(x)cosnxdx


第三步,计算 b n b_n bn,等式两边乘以 s i n m x sin mx sinmx,然后在区间 [ − π , π ] [-\pi, \pi] [π,π]之间计算积分,如下:

∫ − π π f ( x ) s i n m x d x = a 0 2 ∫ − π π s i n m x d x + ∫ − π π ∑ n = 1 ∞ a n c o s n x s i n m x d x + ∫ − π π ∑ n = 1 ∞ b n s i n n x s i n m x d x \begin{align} & \int_{- \pi}^{\pi} f(x) sin mx dx = \frac{a_0}{2} \int_{- \pi}^{\pi} sin mx dx + \int_{- \pi}^{\pi} \sum_{n = 1}^{\infty} a_n cos nx sin mx dx + \int_{- \pi}^{\pi} \sum_{n = 1}^{\infty} b_n sin nx sin mx dx & \end{align} ππf(x)sinmxdx=2a0ππsinmxdx+ππn=1ancosnxsinmxdx+ππn=1bnsinnxsinmxdx

计算第一项为0:

a 0 2 ∫ − π π s i n m x d x = a 0 2 ∫ − π π c o s 0 x s i n m x d x = 0 \begin{align} &\frac{a_0}{2} \int_{- \pi}^{\pi} sin mx dx = \frac{a_0}{2} \int_{- \pi}^{\pi} cos 0x sin mx dx = 0 & \end{align} 2a0ππsinmxdx=2a0ππcos0xsinmxdx=0

计算第二项为0:

∫ − π π ∑ n = 1 ∞ a n c o s n x s i n m x d x = ∫ − π π a 1 c o s x s i n m x d x + ∫ − π π a 2 c o s 2 x s i n m x d x + . . . + ∫ − π π a n c o s n x s i n m x d x + . . . = a 1 ∫ − π π c o s x s i n m x d x + a 2 ∫ − π π c o s 2 x s i n m x d x + . . . + a n ∫ − π π c o s n x s i n m x d x + . . . = 0 \begin{align} \int_{- \pi}^{\pi} \sum_{n = 1}^{\infty} a_n cos nx sin mx dx &= \int_{- \pi}^{\pi} a_1 cos x sin mx dx + \int_{- \pi}^{\pi} a_2 cos 2x sin mx dx + ... + \int_{- \pi}^{\pi} a_n cos nx sin mx dx + ... \\ & = a_1 \int_{- \pi}^{\pi} cos x sin mx dx + a_2 \int_{- \pi}^{\pi} cos 2x sin mx dx + ... + a_n \int_{- \pi}^{\pi} cos nx sin mx dx + ... \\ & = 0 & \end{align} ππn=1ancosnxsinmxdx=ππa1cosxsinmxdx+ππa2cos2xsinmxdx+...+ππancosnxsinmxdx+...=a1ππcosxsinmxdx+a2ππcos2xsinmxdx+...+anππcosnxsinmxdx+...=0

计算第三项

∫ − π π ∑ n = 1 ∞ b n s i n n x s i n m x d x = ∫ − π π b 1 s i n x s i n m x d x + ∫ − π π b 2 s i n 2 x s i n m x d x + . . . + ∫ − π π b n s i n n x s i n m x d x + . . . = b 1 ∫ − π π s i n x s i n m x d x + b 2 ∫ − π π s i n 2 x s i n m x d x + . . . + b n ∫ − π π s i n n x s i n m x d x + . . . \begin{align} \int_{- \pi}^{\pi} \sum_{n = 1}^{\infty} b_n sin nx sin mx dx &= \int_{- \pi}^{\pi} b_1 sin x sin mx dx + \int_{- \pi}^{\pi} b_2 sin 2x sin mx dx + ... + \int_{- \pi}^{\pi} b_n sin nx sin mx dx + ... \\ & = b_1 \int_{- \pi}^{\pi} sin x sin mx dx + b_2 \int_{- \pi}^{\pi} sin 2x sin mx dx + ... + b_n \int_{- \pi}^{\pi} sin nx sin mx dx + ... & \end{align} ππn=1bnsinnxsinmxdx=ππb1sinxsinmxdx+ππb2sin2xsinmxdx+...+ππbnsinnxsinmxdx+...=b1ππsinxsinmxdx+b2ππsin2xsinmxdx+...+bnππsinnxsinmxdx+...

m ≠ n m \ne n m=n

b n ∫ − π π s i n n x s i n m x d x = 0 \begin{align} & b_n \int_{- \pi}^{\pi} sin nx sin mx dx = 0 & \end{align} bnππsinnxsinmxdx=0

m = n m=n m=n时,根据三角函数平方公式可得 ∫ − π π s i n n x s i n n x d x = 1 2 [ ∫ − π π 1 d x − ∫ − π π c o s 2 n x d x ] = π \int_{- \pi}^{\pi} sin nx sin nx dx = \frac{1}{2} \left [\int_{- \pi}^{\pi}1dx - \int_{- \pi}^{\pi}cos 2nxdx \right] = \pi ππsinnxsinnxdx=21[ππ1dxππcos2nxdx]=π,该项只会保留当 m = n m=n m=n时的结果,即:

∫ − π π ∑ n = 1 ∞ b n s i n n x s i n m x d x = ∫ − π π b n s i n ( n x ) s i n ( n x ) d x = π b n \begin{align} & \int_{- \pi}^{\pi} \sum_{n = 1}^{\infty} b_n sin nx sin mx dx = \int_{- \pi}^{\pi} b_n sin (nx) sin (nx) dx = \pi b_n & \end{align} ππn=1bnsinnxsinmxdx=ππbnsin(nx)sin(nx)dx=πbn

那么就有:

∫ − π π f ( x ) s i n n x d x = ∫ − π π ∑ n = 1 ∞ b n s i n n x s i n m x d x = π b n ⇒ b n = 1 π ∫ − π π f ( x ) s i n n x d x \begin{align} & \int_{- \pi}^{\pi} f(x) sin nx dx = \int_{- \pi}^{\pi} \sum_{n = 1}^{\infty} b_n sin nx sin mx dx = \pi b_n \\ & \Rightarrow \\ & b_n = \frac{1}{\pi} \int_{- \pi}^{\pi} f(x) sin nx dx &\end{align} ππf(x)sinnxdx=ππn=1bnsinnxsinmxdx=πbnbn=π1ππf(x)sinnxdx


综上,可以得出,对于一个周期 T = 2 π T=2 \pi T=2π的周期函数,其傅里叶级数为:

f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n c o s n x + b n s i n n x ) 其中 , a 0 = 1 π ∫ − π π f ( x ) d x a n = 1 π ∫ − π π f ( x ) c o s n x d x b n = 1 π ∫ − π π f ( x ) s i n n x d x \begin{align} & f(x) = \frac{a_0} {2} + \sum_{n = 1}^{\infty} \left ( a_n cos nx + b_n sin nx \right) \\ & 其中, \\ & a_0 = \frac{1}{\pi}\int_{- \pi}^{\pi} f(x)dx \\ & a_n = \frac{1}{\pi} \int_{- \pi}^{\pi} f(x) cos nx dx \\ & b_n = \frac{1}{\pi} \int_{- \pi}^{\pi} f(x) sin nx dx &\end{align} f(x)=2a0+n=1(ancosnx+bnsinnx)其中,a0=π1ππf(x)dxan=π1ππf(x)cosnxdxbn=π1ππf(x)sinnxdx


Part3:周期为 2 L 2L 2L的函数展开

对于一个 T = 2 L T=2L T=2L的周期函数 f ( t ) = f ( t + 2 L ) f(t) = f(t+2L) f(t)=f(t+2L) ,展开傅里叶级数。

换元法令 x = π L t x = \frac{\pi}{L} t x=Lπt,那么 t = L π x t = \frac{L}{\pi} x t=πLx,代入到 f ( t ) f(t) f(t)

f ( t ) = f ( L π x ) \begin{align} & f(t) = f(\frac{L}{\pi}x) & \end{align} f(t)=f(πLx)

g ( x ) = f ( t ) = f ( L π x ) g(x) = f(t) = f(\frac{L}{\pi}x) g(x)=f(t)=f(πLx)

x x x t t t f ( t ) = g ( x ) f(t)=g(x) f(t)=g(x)的换算关系可以得到:

( t = − L ⇔ x = − π ) ⇒ f ( − L ) = g ( − π ) (t=-L \Leftrightarrow x=-\pi) \Rightarrow f(-L) = g(-\pi) (t=Lx=π)f(L)=g(π)

( t = L ⇔ x = π ) ⇒ f ( L ) = g ( π ) (t=L \Leftrightarrow x=\pi) \Rightarrow f(L) = g(\pi) (t=Lx=π)f(L)=g(π)

( t = 3 L ⇔ x = 3 π ) ⇒ f ( 3 L ) = g ( 3 π ) (t=3L \Leftrightarrow x= 3\pi) \Rightarrow f(3L) = g(3 \pi) (t=3Lx=3π)f(3L)=g(3π)

. . . ... ...

因为 f ( t ) f(t) f(t)是一个周期为 2 L 2L 2L函数,有 f ( − L ) = f ( L ) = f ( 3 L ) . . . f(-L) = f(L) = f(3L)... f(L)=f(L)=f(3L)...,那么就有 g ( − π ) = g ( π ) = g ( 3 π ) . . . g(-\pi) = g( \pi) = g(3 \pi)... g(π)=g(π)=g(3π)...,可以看出 g ( x ) g(x) g(x)是一个周期为 2 π 2 \pi 2π的周期函数。

展开 g ( x ) g(x) g(x)傅里叶级数为:

g ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n c o s n x + b n s i n n x ) 其中 , a 0 = 1 π ∫ − π π g ( x ) d x a n = 1 π ∫ − π π g ( x ) c o s n x d x b n = 1 π ∫ − π π g ( x ) s i n n x d x \begin{align} & g(x) = \frac{a_0} {2} + \sum_{n = 1}^{\infty} \left ( a_n cos nx + b_n sin nx \right) \\ & 其中, \\ & a_0 = \frac{1}{\pi}\int_{- \pi}^{\pi} g(x)dx \\ & a_n = \frac{1}{\pi} \int_{- \pi}^{\pi} g(x) cos nx dx \\ & b_n = \frac{1}{\pi} \int_{- \pi}^{\pi} g(x) sin nx dx &\end{align} g(x)=2a0+n=1(ancosnx+bnsinnx)其中,a0=π1ππg(x)dxan=π1ππg(x)cosnxdxbn=π1ππg(x)sinnxdx

x = π L t x = \frac{\pi}{L}t x=Lπt代入,有:

c o s n x = c o s n π L t s i n n x = s i n n π L t g ( x ) = f ( t ) ∫ − π π d x = ∫ − L L d π L t = π L ∫ − L L d t 1 π ∫ − π π d x = 1 π ∫ − L L d π L t = 1 π π L ∫ − L L d t = 1 L ∫ − L L d t \begin{align} cos nx & = cos \frac{n \pi}{L}t \\ sin nx & = sin \frac{n \pi}{L}t \\ g(x) & = f(t) \\ \int_{-\pi}^{\pi} dx & = \int_{-L}^{L} d \frac{\pi}{L}t = \frac{\pi}{L} \int_{-L}^{L}dt \\ \frac{1}{\pi} \int_{-\pi}^{\pi} dx & = \frac{1}{\pi} \int_{-L}^{L} d \frac{\pi}{L}t = \frac{1}{\pi} \frac{\pi}{L} \int_{-L}^{L}dt = \frac{1}{L} \int_{-L}^{L}dt \\ &\end{align} cosnxsinnxg(x)ππdxπ1ππdx=cosLt=sinLt=f(t)=LLdLπt=LπLLdt=π1LLdLπt=π1LπLLdt=L1LLdt

代入展开函数有:

f ( t ) = a 0 2 + ∑ n = 1 ∞ ( a n c o s n π L t + b n s i n n π L t ) 其中 , a 0 = 1 L ∫ − L L f ( t ) d x a n = 1 L ∫ − L L f ( t ) c o s n π L t d x b n = 1 L ∫ − L L f ( t ) s i n n π L t d x \begin{align} f(t) &= \frac{a_0} {2} + \sum_{n = 1}^{\infty} \left ( a_n cos \frac{n \pi}{L}t + b_n sin \frac{n \pi}{L}t \right) \\ & 其中, \\ a_0 &= \frac{1}{L}\int_{- L}^{L} f(t)dx \\ a_n &= \frac{1}{L} \int_{- L}^{L} f(t) cos \frac{n \pi}{L}t dx \\ b_n &= \frac{1}{L} \int_{- L}^{L} f(t) sin \frac{n \pi}{L}t dx &\end{align} f(t)a0anbn=2a0+n=1(ancosLt+bnsinLt)其中,=L1LLf(t)dx=L1LLf(t)cosLtdx=L1LLf(t)sinLtdx


在工程中, t t t 0 0 0开始,周期 T = 2 L T = 2L T=2L,令 ω = π L = 2 π T \omega = \frac{\pi}{L} = \frac{2 \pi}{T} ω=Lπ=T2π,有 L = π ω L = \frac{\pi}{\omega} L=ωπ

对于周期函数

∫ − L L d t = ∫ 0 2 L d t = ∫ 0 T d t \begin{align} & \int_{-L}^{L} dt = \int_{0}^{2L} dt = \int_{0}^{T} dt &\end{align} LLdt=02Ldt=0Tdt

代入上面的展开函数就得到,对于 T = 2 L T=2L T=2L的周期函数,其傅里叶级数展开如下:

f ( t ) = a 0 2 + ∑ n = 1 ∞ ( a n c o s n ω t + b n s i n n ω t ) 其中 , a 0 = 1 L ∫ − L L f ( t ) d x a n = 1 L ∫ − L L f ( t ) c o s n ω t d x b n = 1 L ∫ − L L f ( t ) s i n n ω t d x \begin{align} & f(t) = \frac{a_0} {2} + \sum_{n = 1}^{\infty} \left ( a_n cos n \omega t + b_n sin n \omega t \right) \\ & 其中, \\ & a_0 = \frac{1}{L}\int_{- L}^{L} f(t)dx \\ & a_n = \frac{1}{L} \int_{- L}^{L} f(t) cos n \omega t dx \\ & b_n = \frac{1}{L} \int_{- L}^{L} f(t) sin n \omega t dx &\end{align} f(t)=2a0+n=1(ancost+bnsinnωt)其中,a0=L1LLf(t)dxan=L1LLf(t)costdxbn=L1LLf(t)sinnωtdx


原视频博主提供了一个示例,计算如下图所示的周期函数的傅里叶展开。

傅里叶级数展开示例

解:

由上图知道周期 T = 2 L = 20 T= 2L = 20 T=2L=20,令 ω = π L = π 10 \omega = \frac{\pi} {L} = \frac{\pi}{10} ω=Lπ=10π。根据上面得到的结论,上图的傅里叶级数展开函数为:
f ( t ) = a 0 2 + ∑ n = 1 ∞ ( a n c o s n ω t + b n s i n n ω t ) ,其中 L = 10 a 0 = 1 L ∫ − L L f ( t ) d x a n = 1 L ∫ − L L f ( t ) c o s n ω t d x b n = 1 L ∫ − L L f ( t ) s i n n ω t d x \begin{align} f(t) &= \frac{a_0} {2} + \sum_{n = 1}^{\infty} \left ( a_n cos n \omega t + b_n sin n \omega t \right) & ,其中L=10 \\ a_0 &= \frac{1}{L}\int_{- L}^{L} f(t)dx \\ a_n &= \frac{1}{L} \int_{- L}^{L} f(t) cos n \omega t dx \\ b_n &= \frac{1}{L} \int_{- L}^{L} f(t) sin n \omega t dx &\end{align} f(t)a0anbn=2a0+n=1(ancost+bnsinnωt)=L1LLf(t)dx=L1LLf(t)costdx=L1LLf(t)sinnωtdx,其中L=10
代入图示函数计算:
a 0 = 1 10 [ ∫ 0 10 7 d x + ∫ 0 10 3 d x ] = 1 10 [ 7 ⋅ ( 10 − 0 ) + 3 ⋅ ( 20 − 10 ) ] = 10 \begin{align} a_0 &= \frac{1}{10} \left[ \int_{0}^{10} 7dx + \int_{0}^{10} 3dx \right] \\ & = \frac{1}{10} \left[ 7 \cdot (10-0) + 3 \cdot (20-10) \right] \\ & = 10 \end{align} a0=101[0107dx+0103dx]=101[7(100)+3(2010)]=10

a n = 1 10 [ ∫ 0 10 7 c o s n ω t d x + ∫ 10 20 3 c o s n ω t d x ] = 1 10 [ 7 n ω s i n n ω t ∣ 0 10 + 3 n ω s i n n ω t ∣ 10 20 ] = 1 n π [ 7 ( s i n n π − s i n 0 ) + 3 ( s i n 2 n π − s i n n π ) ] = 0 \begin{align} a_n & = \frac{1}{10} \left[ \int_{0}^{10} 7 cos n \omega t dx + \int_{10}^{20} 3 cos n \omega t dx \right] \\ & = \frac{1}{10} \left[ \frac{7}{n \omega} sin n \omega t |_{0}^{10} + \frac{3}{n\omega} sin n \omega t |_{10}^{20} \right] \\ & = \frac{1}{n \pi} \left[ 7 ( sin n \pi - sin 0) + 3 (sin 2n \pi - sin n \pi) \right] \\ & = 0 \end{align} an=101[0107costdx+10203costdx]=101[7sinnωt010+3sinnωt1020]=1[7(sinnπsin0)+3(sin2sinnπ)]=0

b n = 1 10 [ ∫ 0 10 7 s i n n ω t d x + ∫ 10 20 3 s i n n ω t d x ] = 1 10 [ − 7 n ω c o s n ω t ∣ 0 10 − 3 n ω c o s n ω t ∣ 10 20 ] = − 1 n π [ 7 ( c o s n π − c o s 0 ) + 3 ( c o s 2 n π − c o s n π ) ] = 4 n π [ 1 − c o s n π ] \begin{align} b_n & = \frac{1}{10} \left[ \int_{0}^{10} 7 sin n \omega t dx + \int_{10}^{20} 3 sin n \omega t dx \right] \\ & = \frac{1}{10} \left[ - \frac{7}{n \omega} cos n \omega t |_{0}^{10}- \frac{3}{n\omega} cos n \omega t |_{10}^{20} \right] \\ & = - \frac{1}{n \pi} \left[ 7 ( cos n \pi - cos 0) + 3 (cos 2n \pi - cos n \pi )\right] \\ & = \frac{4}{n \pi} \left[ 1 - cos n \pi \right] \end{align} bn=101[0107sinnωtdx+10203sinnωtdx]=101[7cost0103cost1020]=1[7(coscos0)+3(cos2cos)]=4[1cos]

n n n是奇数时, c o s n π = − 1 cos n \pi = -1 cos=1,此时 b n = 8 n π b_n = \frac{8}{n \pi} bn=8

n n n是偶数时, c o s n π = 1 cos n \pi = 1 cos=1,此时 b n = 0 b_n = 0 bn=0

最后,图示函数的傅里叶级数展开为:
F ( t ) = { 5 + ∑ n = 1 ∞ ( 8 n π s i n n π 10 t ) , n = 2 k + 1 , k ∈ z 5 , n = 2 k , k ∈ z \begin{align} F(t) = \left\{\begin{matrix} 5 + \sum_{n=1}^{\infty} (\frac{8}{n \pi} sin \frac{n \pi}{10} t),& n=2k+1,k \in z \\ 5 , & n=2k,k \in z \end{matrix}\right. \end{align} F(t)={5+n=1(8sin10t)5,n=2k+1,kzn=2k,kz
从展开函数中可以发现,当 n n n越大时, 8 n π \frac{8}{n \pi} 8越小, n π 10 \frac{n \pi}{10} 10越大即频率越高。现在取 n = 1 , 3 , 5 n=1, 3, 5 n=1,3,5,得到每个频率分量分别为:
n = 1 时为 8 π s i n π 10 t ; n = 3 时为 8 3 π s i n 3 π 10 t ; n = 5 时为 8 5 π s i n 5 π 10 t ; \begin{align} n =1时为 \frac{8}{ \pi} sin \frac{ \pi}{10} t; \\ n = 3 时为 \frac{8}{3 \pi} sin \frac{3 \pi}{10} t; \\ n = 5 时为 \frac{8}{5 \pi} sin \frac{5 \pi}{10} t; \\ \end{align} n=1时为π8sin10πtn=3时为3π8sin103πtn=5时为5π8sin105πt
这三个频率以及它们叠加后的图示如下,可以发现,频率越大,其振幅越小,叠加后的变化大致与给定示意图一致。

在这里插入图片描述


http://www.ppmy.cn/news/1041486.html

相关文章

常见的 JavaScript 框架比较

以下是10种常见的JavaScript框架的比较: React:是由Facebook开发和维护的开源JavaScript库,用于构建用户界面。它允许你使用组件来构建复杂的UI,并专注于每个组件的内部逻辑,而不必担心管理整个应用程序的状态。WebBu…

ISP(Internet Service Provider)

ISP 是互联网服务提供商(Internet Service Provider)的缩写,它指的是为个人、家庭或企业提供上网连接和其他网络服务的公司或组织。ISP 是连接用户与全球互联网的桥梁,它提供了各种类型的网络服务,包括宽带、移动网络、…

mq 消息队列 mqtt emqx ActiveMQ RabbitMQ RocketMQ

省流: 十几年前,淘宝的notify,借鉴ActiveMQ。京东的ActiveMQ集群几百台,后面改成JMQ。 Linkedin的kafka,因为是scala,国内很多人不熟。淘宝的人把kafka用java写了一遍,取名metaq,后…

Docker入门——实战图像分类

一、背景 思考: 在一个项目的部署阶段,往往需要部署到云服务器或者是终端设备上,而环境的搭建往往是最费时间和精力的,特别是需要保证运行环境一致性,有什么办法可以批量部署相同环境呢? Docker本质——…

设计模式之适配器模式(Adapter)的C++实现

1、适配器模式的提出 在软件功能开发中,由于使用环境的改变,之前一些类的旧接口放在新环境的功能模块中不再适用。如何使旧接口能适用于新的环境?适配器可以解决此类问题。适配器模式:通过增加一个适配器类,在适配器接…

PAT 1097 Deduplication on a Linked List

个人学习记录,代码难免不尽人意 Given a singly linked list L with integer keys, you are supposed to remove the nodes with duplicated absolute values of the keys. That is, for each value K, only the first node of which the value or absolute value o…

linux自动填充密码及提示信息

背景:需要自动创建nvc的登录密码 sudo apt-get install expect expect 是由Don Libes基于Tcl(Tool Command Language )语言开发的,主要应用于自动化交互式操作的场景,借助Expect处理交互的命令,可以将交互…

wangEditor5实现@评论功能

需求描述:在输入框输入后显示用户列表,实现人功能 当前环境:vue3viteelementPluswangEditor5 需要插件:wangeditor/plugin-mention 安装插件:npm i wangeditor/plugin-mention 输入框组件分两部分:1. wa…