Kafka如何解决消息丢失的问题

news/2025/2/22 12:44:40/

在 Kafka 的整个架构中可以总结出消息有三次传递的过程:

  1. Producer 端发送消息给 Broker 端
  2. Broker 将消息进行并持久化数据
  3. Consumer 端从 Broker 将消息拉取并进行消费

在以上这三步中每一步都可能会出现丢失数据的情况, 那么 Kafka 到底在什么情况下才能保证消息不丢失呢?

Producer 端丢失

Producer 端为了提升发送效率,减少 IO 操作,发送消息的时候是将多个请求异步发送出去,所以 Producer 端消息丢失更多是因为消息根本就没有发送到 Broker 端。

导致 Producer 端没有发送消息成功的有以下原因:

  • 网络原因:由于网络抖动导致数据没发到 Broker 端
  • 数据原因:消息体太大超出 Broker 承受范围导致 Broker 拒收消息

解决方案

Producer 端数据丢失是因为通过异步的方式进行发送的,所以如果此时使用发后即焚的方式发送,即调用 Producer.send(msg) 会立即返回,由于没有回调,可能因网络原因导致 Broker 并没有收到消息,此时就丢失了。

因此可以从以下几方面进行解决 Producer 端消息丢失问题:

  • 使用带回调通知函数的方法进行发送消息
  • ACK 确认机制
  • 重试次数

Producer 端通过 ACK 配置来确认消息是否生产成功,配置参数如下:

  • 0:由于发送后就自认为发送成功,这时如果发生网络抖动,会造成数据丢失
  • 1:消息发送 Leader 分区并接收成功就表示发送成功,只要 Leader 分区不挂掉,就可以保证数据不丢数据,但是如果 Leader 分区挂掉了,Follower 分区还未同步完数据且没有 ACK,这时就会丢数据
  • -1 或者 all: 消息发送需要等待 ISR 中 Leader 分区和所有的 Follower 分区都确认收到消息才算发送成功, 可靠性最高,但也不能保证不丢数据,比如:当 ISR 中只有 Leader 分区, 这样就变成 acks = 1 的情况了

Broker 端丢失

Broker 接收到数据后会将消息进行持久化到磁盘存储,为了提高吞吐量和性能,采用的是异步批量刷盘的策略,也就是说按照一定的消息量和间隔时间进行刷盘。

首先会将数据存储到 PageCache 中,至于什么时候将 Cache 中的数据刷盘是由操作系统根据自己的策略决定或者调用 fsync 命令进行强制刷盘。如果在同步到 Follower 分区前 Broker 宕机掉,且选举了一个新的 Leader 分区,那么落后的消息数据就会丢失。

既然 Broker 端消息存储是通过异步批量刷盘的,那么就有可能会丢数据。由于 Kafka 中并没有提供同步刷盘的方式,所以单个 Broker 还是很有可能丢失数据的。

kafka 通过多分区多副本机制已经可以最大限度的保证数据不丢失,如果数据已经写入 PageCache 中但是还没来得及刷写到磁盘,此时如果所在 Broker 突然宕机挂掉或者停电,极端情况还是会造成数据丢失。

解决方案

Broker 端丢失消息是因为通过异步批量刷盘的策略,先将数据存储到 PageCache,再进行异步刷盘。

因此 Kafka 是通过多分区多副本的方式来最大限度的保证数据不丢失。可以通过以下参数配合来保证:

  • unclean.leader.election.enable:该参数表示有哪些 Follower 可以有资格被选举为 Leader , 如果一个 Follower 的数据落后 Leader 太多,那么一旦它被选举为新的 Leader, 数据就会丢失,因此我们要将其设置为false,防止此类情况发生。
  • replication.factor:该参数表示分区副本的个数。建议设置 replication.factor >=3, 这样如果 Leader 副本挂掉,Follower 副本会被选举为新的 Leader 副本继续提供服务。
  • min.insync.replicas:该参数表示消息至少要被写入成功到 ISR 多少个副本才算”已提交”,建议设置min.insync.replicas > 1, 这样才可以提升消息持久性,保证数据不丢失。

另外还需要确保一下 replication.factor > min.insync.replicas,如果相等,只要有一个副本挂掉,整个分区就无法正常工作了,因此推荐设置成: replication.factor = min.insync.replicas +1, 最大限度保证系统可用性。

Consumer 端丢失

消息消费流程主要分为两个阶段:

  • 从 Broker 上拉取数据
  • 处理消息,并提交 Offset 记录

Consumer 拉取后消息后需要提交 Offset, 那么这里就可能会丢数据的。丢失原因如下:

  • 可能使用的自动提交 Offset 方式
  • 拉取消息后先提交 Offset,后处理消息,如果此时处理消息的时候异常宕机,由于 Offset 已经提交了, 待 Consumer 重启后,会从之前已提交的 Offset 下一个位置重新开始消费, 之前未处理完成的消息不会被再次处理,对于该 Consumer 来说消息就丢失了。
  • 拉取消息后先处理消息,在进行提交 Offset, 如果此时在提交之前发生异常宕机,由于没有提交成功 Offset, 待下次 Consumer 重启后还会从上次的 Offset 重新拉取消息,不会出现消息丢失的情况, 但是会出现重复消费的情况,这里只能业务自己保证幂等性。

解决方案

Consumer 端丢失消息是因为在拉取完消息后提交 Offset 造成的,因此为了不丢数据,正确的做法是:拉取数据、业务逻辑处理、提交消费 Offset 位移信息。

同时还需要设置参数 enable.auto.commit = false,采用手动提交位移的方式。另外对于消费消息重复的情况,业务自己保证幂等性, 保证只成功消费一次即可。


http://www.ppmy.cn/news/1041272.html

相关文章

阿里云云解析DNS核心概念与应用

文章目录 1.DNS解析基本概念1.1.DNS基本介绍1.2.域名的分层结构1.3.DNS解析原理1.4.DNS递归查询和迭代查询的区别1.5.DNS常用的解析记录 2.使用DNS云解析将域名与SLB公网IP进行绑定2.1.进入云解析DNS控制台2.2.添加域名解析记录2.3.验证解析是否生效 1.DNS解析基本概念 DNS官方…

Winload.efi丢失或损坏怎么办?

Winload.efi是一个EFI(或可扩展固件接口)文件。可执行的EFI文件适用于基于计算机系统的UEFI,并将文件加载到计算机引导加载程序的执行任务。它们包含有关操作系统引导过程应如何进行的重要数据。因此,Winload.efi文件对于成功启动…

vue 实现图片懒加载

一:懒加载的目的 有些页面可能展示的是大量的图片,如果我们一次性加载所有图片就会浪费性能,影响用户体验,所以我们就会懒加载这些图片。即可视区域之外的图片不加载,随着页面的滚动,图片进入可视区域&…

centos如何查找某一命令对应的安装包

需求背景 有时候在容器里搭建了一个开发环境,需要有些命令能在容器里也能用,但是有时候只知道命令,但是不知道这个命令对应的是哪个安装包提供,比如最简单的命令 ip命令,"ip a"可以查看主机的所有ip信息&am…

go 协程并发数控制

错误的写法&#xff1a; 这里的<-ch 是为了从channel 中读取 数据&#xff0c;为了不使channel通道被写满&#xff0c;阻塞 go 协程数的创建。但是请注意&#xff0c;go workForDraw(v, &wg) 是不阻塞后续的<-ch 执行的&#xff0c;所以就一直go workForDraw(v, &…

强训第33天

选择 C A ping是TCP/IP协议族的一部分&#xff0c;使用ICMP协议&#xff0c;ICMP底层使用IP协议。如果要ping其他网段&#xff0c;则需要设置网关。 如果是二层交换机故障&#xff0c;则ping同网段的也会不通。 C Dos攻击被称之为“拒绝服务攻击”&#xff0c;其目的是使计算机…

简单的洗牌算法

目录 前言 问题 代码展现及分析 poker类 game类 Text类 前言 洗牌算法为ArrayList具体使用的典例&#xff0c;可以很好的让我们快速熟系ArrayList的用法。如果你对ArrayList还不太了解除&#xff0c;推荐先看本博主的ArrayList的详解。 ArrayList的详解_WHabcwu的博客-CSD…

【Java转Go】快速上手学习笔记(三)之基础篇二

【Java转Go】快速上手学习笔记&#xff08;二&#xff09;之基础篇一 了解了基本语法、基本数据类型这些使用&#xff0c;接下来我们来讲数组、切片、值传递、引用传递、指针类型、函数、map、结构体。 目录 数组和切片值传递、引用传递指针类型defer延迟执行函数map结构体匿名…