文章目录
- 计数排序概念
- 计数排序算法思路
- 计数排序算法过程
- 计数排序代码实现
- 计数排序缺陷
计数排序概念
计数排序是一个非基于比较的排序算法,元素从未排序状态变为已排序状态的过程,是由额外空间的辅助和元素本身的值决定的。该算法于1954年由 Harold H. Seward 提出。它的优势在于在对一定范围内的整数排序时,它的复杂度为Ο(n+k)(其中k是整数的范围),快于任何比较排序算法。当然这是一种牺牲空间换取时间的做法,而且当 的时候其效率反而不如基于比较的排序,因为基于比较的排序的时间复杂度在理论上的下限是 。
计数排序算法思路
顾名思义,该算法不是通过比较数据的大小来进行排序的,而是通过统计数组中相同元素出现的次数,然后通过统计的结果将序列回收到原来的序列中。
动图展示:
举个例子:
上列中的映射方法称为绝对映射,即arr数组中的元素是几就在count数组中下标为几的位置++,但这样会造成空间浪费。例如,我们要将数组:1020,1021,1018,进行排序,难道我们要开辟1022个整型空间吗?
若是使用计数排序,我们应该使用相对映射,简单来说,数组中的最小值就相对于count数组中的0下标,数组中的最大值就相对于count数组中的最后一个下标。这样,对于数组:1020,1021,1018,我们就只需要开辟用于储存4个整型的空间大小了,此时count数组中下标为i的位置记录的实际上是1018+i这个数出现的次数。
总结:
绝对映射:count数组中下标为i的位置记录的是arr数组中数字i出现的次数。
相对映射:count数组中下标为i的位置记录的是arr数组中数字min+i出现的次数。
计数排序算法过程
1 根据待排序集合中最大元素和最小元素的差值范围,申请额外空间;
2.遍历待排序集合,将每一个元素出现的次数记录到元素值对应的额外空间内;
3.对额外空间内数据进行计算,得出每一个元素的正确位置;
4.将待排序集合每一个元素移动到计算得出的正确位置上。
先假设 20 个数列为:{9, 3, 5, 4, 9, 1, 2, 7, 8,1,3, 6, 5, 3, 4, 0, 10, 9, 7, 9}。
让我们先遍历这个无序的随机数组,找出最大值为 10 和最小值为 0。这样我们对应的计数范围将是 0 ~ 10。然后每一个整数按照其值对号入座,对应数组下标的元素进行加1操作。
比如第一个整数是 9,那么数组下标为 9 的元素加 1,如下图所示。
第二个整数是 3,那么数组下标为 3 的元素加 1,如下图所示。
继续遍历数列并修改数组…。最终,数列遍历完毕时,数组的状态如下图。
数组中的每一个值,代表了数列中对应整数的出现次数。
有了这个统计结果,排序就很简单了,直接遍历数组,输出数组元素的下标值,元素的值是几,就输出几次。比如统计结果中的 1 为 2,就是数列中有 2 个 1 的意思。这样我们就得到最终排序好的结果。
0, 1, 1, 2, 3, 3, 3, 4, 4, 5, 5, 6, 7, 7, 8, 9, 9, 9, 9, 10
计数排序代码实现
代码示例:
//计数排序
void CountSort(int* a, int n)
{int min = a[0];//记录数组中的最小值int max = a[0];//记录数组中的最大值for (int i = 0; i < n; i++){if (a[i] < min)min = a[i];if (a[i] > max)max = a[i];}int range = max - min + 1;//min和max之间的自然数个数(包括min和max本身)int* count = (int*)calloc(range, sizeof(int));//开辟可储存range个整型的内存空间,并将内存空间置0if (count == NULL){printf("malloc fail\n");exit(-1);}//统计相同元素出现次数(相对映射)for (int i = 0; i < n; i++){count[a[i] - min]++;}int i = 0;//根据统计结果将序列回收到原来的序列中for (int j = 0; j < range; j++){while (count[j]--){a[i++] = j + min;}}free(count);//释放空间
}
时间复杂度:O(N+range)
空间复杂度:O(range)
计数排序缺陷
虽然计数排序看上去很强大,但是它存在两大局限性:
1.当数列最大最小值差距过大时,并不适用于计数排序
比如给定 20 个随机整数,范围在 0 到 1 亿之间,此时如果使用计数排序的话,就需要创建长度为 1 亿的数组,不但严重浪费了空间,而且时间复杂度也随之升高。
2.当数列元素不是整数时,并不适用于计数排序
如果数列中的元素都是小数,比如 3.1415,或是 0.00000001 这样子,则无法创建对应的统计数组,这样显然无法进行计数排序。